
Kannel svn-r5316M User’s Guide

Open Source WAP and SMS gateway

Andreas Fink
Chairman & CTO

Global Networks Inc.

andreas@fink.org
http://www.smsrelay.com/

http://www.gni.ch/

Bruno Rodrigues

bruno.rodrigues@litux.org
http://litux.org/bruno

Stipe Tolj
System Architect

Tolj System Architecture

stolj@kannel.org

http://www.tolj.org/

Aarno Syvänen
Chief MMS Developer
Global Networks Inc.

as@gni.ch
http://www.gni.ch/

Alexander Malysh
Senior Software Engineer

GTX Messaging GmbH.

amalysh at kannel.org
http://www.gtx-messaging.com/

Alejandro Guerrieri
Senior System Architect

3Cinteractive, L.L.C.

aguerrieri@kannel.org
http://www.3cinteractive.com/

Lars Wirzenius
Gateway architect
former Wapit Ltd

Kalle Marjola
Senior Software Engineer

Enpocket

marjola@enpocket.com
http://www.enpocket.com

Kannel svn-r5316M User’s Guide: Open Source WAP and SMS gateway
by Andreas Fink, Bruno Rodrigues, Stipe Tolj, Aarno Syvänen, Alexander Malysh, Alejandro Guerrieri, Lars
Wirzenius, and Kalle Marjola

Abstract

This document describes how to install and use Kannel, the Open Source WAP and SMS Gateway originally
developed by Wapit Ltd (now out of business) and now being developed further by the open source community,
namely the Kannel Group.

Revision History

Revision svn-r5316M 2021.12.09

Table of Contents
1. Introduction..1

Overview of WAP ..1
Overview of WAP Push..2
Overview of SMS...3
Features ..4

WAP..4
WAP Push...4
SMS ..4

Requirements ...5

2. Installing the gateway..6
Getting the source code..6
Finding the documentation...6
Compiling the gateway...6
Installing the gateway...8
Using pre-compiled binary packages ...9

Installing Kannel from RPM packages...9
Installing Kannel from DEB packages ...10

3. Using the gateway ..13
Configuring the gateway ..13

Configuration file syntax ..13
Inclusion of configuration files...14
Core configuration ..15

Running Kannel ...26
Starting the gateway ...26
Command line options..27
Kannel statuses ...28
HTTP administration ..29

4. Setting up a WAP gateway ..32
WAP gateway configuration...32

Wapbox group...32
Running WAP gateway ..35
Checking whether the WAP gateway is alive...35

5. Setting up wtls security ...36
Wtls configuration..37

6. Setting up MSISDN provisioning for WAP gateway ..38
RADIUS accounting proxy configuration..38

RADIUS-Acct configuration ..38
Using the MSISDN provisioning on HTTP server side ...40

7. Setting up a SMS Gateway..41
Required components...41
SMS gateway configuration ...41
SMS centers ...41

Nokia CIMD 1.37 and 2.0 ..48

v

CMG UCP/EMI 4.0 and 3.5 ...49
SMPP 3.3, 3.4 and 5.0 ..54
Sema Group SMS2000 OIS 4.0, 5.0 and 5.8..61
SM/ASI (for CriticalPath InVoke SMS Center 4.x) ...62
GSM modem ..63

Modem initialization...69
GSMA OneAPI v1.0 ParlayX SMS SOAP ..70
Fake SMSC...71
HTTP-based relay and content gateways ...71

The "generic" system-type..73
Loopback SMSC (MT to MO direction switching) ...76
Using multiple SMS centers...76
Feature checklist ...77

External delivery report (DLR) storage ...79
Internal DLR storage ..79
MySQL DLR storage ...79

MySQL connection configuration...80
LibSDB DLR storage ...81
Oracle 8i/9i DLR storage..82
PostgreSQL DLR storage ...82
MS-SQL/Sybase DLR storage ...83
SQLite3 DLR storage ...84
Redis DLR storage ...84

Redis connection configuration...85
Cassandra DLR storage ..86
DLR database field configuration...87

SMSBox configuration...89
Smsbox group...89
Smsbox routing inside bearerbox ...94
SMS-service configurations..96
How sms-service interprets the HTTP response...106

Extended headers ..107
Kannel POST ..107
XML Post..108

SendSMS-user configurations ..110
Over-The-Air configurations ..112
Setting up more complex services ..114

Redirected replies..114
Setting up operator specific services...115
Setting up multi-operator Kannel..115

Running SMS gateway...116
Using the HTTP interface to send SMS messages ...116
Using the HTTP interface to send OTA configuration messages ...121

OTA settings and bookmark documents ...121
OTA syncsettings documents ..122
OMA provisioning content ...123
GET method for the OTA HTTP interface..123

vi

8. Setting up Push Proxy Gateway ...125
Configuring ppg core group, for push initiator (PI) interface ..125
Configuring PPG user group variables...127
Finishing ppg configuration ...129
Running a push proxy gateway ..130
An example using HTTP SMSC..130
An example of minimum SI document ..130
An example push (tokenized SI) document ...131
Default network and bearer used by push proxy gateway..131
Push related Kannel headers ..132
Requesting SMS level delivery reports for WAP pushes ...132
Routing WAP pushes to a specific smsc ..134

9. Using SSL for HTTP..135
Using SSL client support ...135
Using SSL server support for the administration HTTP interface ...135
Using SSL server support for the sendsms HTTP interface ..135
Using SSL server support for PPG HTTPS interface ..136

10. SMS Delivery Reports ...137
11. Getting help and reporting bugs...139
A. Upgrading notes ..140

From 1.2.x or 1.3.1 to 1.3.2 and later...140

B. Certificate generation ...141
Self-signed 1024-bit RSA SSL certificates using openssl ...141

C. Using the fake WAP sender..142
D. Using the fake SMS center ...143

Setting up fakesmsc..143
Compiling fakesmsc ...143
Configuring Kannel ..143

Running Kannel with fakesmsc connections ...143
Starting fake SMS center..143

Fake messages...144
Interactive mode..144
Fakesmsc command line options ..144

E. Setting up a test environment for Push Proxy Gateway..146
Creating push content and control document for testing ...146
Starting necessary programs ..147
Using Nokia Toolkit as a part of a developing environment..149
Testing PAP protocol over HTTPS ..150

F. Setting up a dial-up line ..152
Analog modem...152
ISDN terminal ..153

vii

G. Regular Expressions ...154
Syntax and semantics of the regex configuration parameter..154

How-to setup the regex-parameters ..154
Regex and non-regex-parameters ...155
Performance issues ...156

Examples ..156
Example 1: core-configuration ...156
Example 3: smsc-configuration ..156
Example 4: sms-service-configuration ...157

H. Meta Data ..158
Overview ..158
SMPP Implementation ...158

MO Messages ...159
Example ..159

MT Messages..159
Examples...160

I. Log files ...161
Bearerbox Access Log ...161
Log rotation..161

Glossary ..163
Bibliography...164

viii

List of Tables
3-1. Core Group Variables ...15
3-2. Kannel Command Line Options...27
3-3. Kannel HTTP Administration Commands ...29
4-1. Wapbox Group Variables..32
5-1. Wtls Group Variables ...37
6-1. RADIUS-Acct Group Variables ...38
7-1. SMSC Group Variables ..41
7-2. SMSC driver features ...77
7-3. SMSC driver internal features ..78
7-4. MySQL Connection Group Variables ..80
7-5. Redis Connection Group Variables ..85
7-6. DLR Database Field Configuration Group Variables...87
7-7. Smsbox Group Variables ..89
7-8. Smsbox-route Group Variables ..95
7-9. SMS-Service Group Variables..96
7-10. Parameters (Escape Codes) ..103
7-11. X-Kannel Headers ..107
7-12. X-Kannel Post Headers ..108
7-13. SendSMS-User Group Variables ..110
7-14. OTA Setting Group Variables...112
7-15. OTA Bookmark Group Variables ...114
7-16. SMS Push reply codes..116
7-17. SMS Push (send-sms) CGI Variables...117
7-18. OTA CGI Variables...123
8-1. PPG core group configuration variables...125
8-2. PPG user group configuration variables ...127
8-3. Kannel headers used by PPG..132
D-1. Fakesmsc command line options...144
E-1. Test_ppg’s command line options..148
E-2. Test_ppg’s configuration file directives ...150

ix

Chapter 1. Introduction

This chapter introduces WAP and SMS in general terms, and explains the role of the gateway in WAP
and SMS, outlining their duties and features. It also explains why the Kannel project was started in the
first place, and why it is open source.

With hundreds of millions of mobile phones in use all over the world, the market for services targeted at
mobile users is mind-bogglingly immense. Even simple services find plenty of users, as long as they’re
useful or fun. Being able to get news, send e-mail or just be entertained wherever you are is extremely
attractive to many.

The hottest technology for implementing mobile services is WAP, short for Wireless Application
Protocol. It lets the phone act as a simple web browser, but optimizes the markup language, scripting
language, and the transmission protocols for wireless use. The optimized protocols are translated to plain
old HTTP by a WAP gateway.

Kannel is an open source WAP gateway. It attempts to provide this essential part of the WAP
infrastructure freely to everyone so that the market potential for WAP services, both from wireless
operators and specialized service providers, will be realized as efficiently as possible.

Kannel also works as an SMS gateway for GSM networks. Almost all GSM phones can send and receive
SMS messages, so this is a way to serve many more clients than just those using a new WAP phone.

In addition, Kannel operates as Push Proxy Gateway , or PPG, making possible for content servers to
send data to the phones. This is a new type of WAP service, and have many interesting applications.
Usually servers know whether some data is new, not the users.

Kannel’s quality has been recognized on March 7, 2001 when it was certified
(http://www.kannel.org/oldnews.shtml#wapcert) by WAP Forum (http://www.wapforum.org) as the first
WAP 1.1 gateway in the world.

Greater quality recognition are the quantity of companies using Kannel to successful connect to a variety
of SMSC protocols in lots of countries.

Open Source (http://www.opensource.org) is a way to formalize the principle of openness by placing the
source code of a product under a Open Source compliant software license. The BSD license was chosen
over other Open Source licenses by the merit of placing the least amount of limitations on what a third
party is able to do with the source code. In practice this means that Kannel is going to be a fully-featured
WAP implementation and compatible with the maximum number of bearers with special emphasis on
SMSC compatibility. The Kannel project was founded by Wapit Ltd in June, 1999.

Overview of WAP
WAP, short for Wireless Application Protocol, is a collection of various languages and tools and an
infrastructure for implementing services for mobile phones. Traditionally such services have worked via
normal phone calls or short textual messages (e.g., SMS messages in GSM networks). Neither are very
efficient to use, nor very user friendly. WAP makes it possible to implement services similar to the World
Wide Web.

1

Chapter 1. Introduction

Unlike marketers claim, WAP does not bring the existing content of the Internet directly to the phone.
There are too many technical and other problems for this to ever work properly. The main problem is that
Internet content is mainly in the form of HTML pages, and they are written in such way that they require
fast connections, fast processors, large memories, big screens, audio output and often also fairly efficient
input mechanisms. That’s OK, since they hopefully work better for traditional computers and networks
that way. However, portable phones have very slow processors, very little memory, abysmal and
intermittent bandwidth, and extremely awkward input mechanisms. Most existing HTML pages do not
work on mobiles phones, and never will.

WAP defines a completely new markup language, the Wireless Markup Language (WML), which is
simpler and much more strictly defined than HTML. It also defines a scripting language, WMLScript,
which all browsers are required to support. To make things even simpler for the phones, it even defines
its own bitmap format (Wireless Bitmap, or WBMP).

HTTP is also too inefficient for wireless use. However, by using a semantically similar binary and
compressed format it is possible to reduce the protocol overhead to a few bytes per request, instead of the
usual hundreds of bytes. Thus, WAP defines a new protocol stack to be used. However, to make things
simpler also for the people actually implementing the services, WAP introduces a gateway between the
phones and the servers providing content to the phones.

Figure 1-1. Logical position of WAP gateway (and PPG) between a phone and a content server.

The WAP gateway talks to the phone using the WAP protocol stack, and translates the requests it receives
to normal HTTP. Thus content providers can use any HTTP servers and utilize existing know-how about
HTTP service implementation and administration.

In addition to protocol translations, the gateway also compresses the WML pages into a more compact
form, to save on-the-air bandwidth and to further reduce the phone’s processing requirements. It also
compiles WMLScript programs into a byte-code format. Latest WAP specifications defines some
additional conversions that Kannel is starting to implement, like multipart/form-data, multipart/mixed or
MMS content conversion.

Kannel is not just a WAP gateway. It also works as an SMS gateway. Although WAP is the hot and
technically superior technology, SMS phones exist in huge numbers and SMS services are thus quite

2

Chapter 1. Introduction

useful. Therefore, Kannel functions simultaneously as both a WAP and an SMS gateway.

Overview of WAP Push
Previous chapter explained pull mode of operation: the phone initiates the transaction. There is, however,
situations when the server (called in this context a push initiator) should be the initiator, for instance,
when it must send a mail notification or a stock quote. For this purpose WAP Forum defined WAP Push.

Push is an application level service, sitting on the top of existing WAP stack. It defines two protocols,
OTA and PAP. OTA is a ligthweigth protocol speaking with WAP stack (to be more specific, with WSP),
PAP speaks with the push initiator. It defines three kind of XML documents, one for the push data itself
and another for protocol purposes (these are called pap document or push control documents).

The server does not simply send push content to the phone, the user would surely not accept, for
instance, interrupting of a voice call. Instead it sends a specific XML document, either Service Indication
or Service Loading. These inform the user about the content become available, and it is displayed only
when it is not interrupting anything. It contains an URL specifying the service and a text for user
describing the content. Then the user can decide does he accept push or not.

The push content is send ed to the phones over SMS, but the content is fetched by the phone over IP
bearer, for instance CSD or GPRS. Because Push Proxy Gateway tokenises SI and SL documents, it may
fit one SMS message (if not, it is segmented for transfer).

Using two bearers seems to be an unnecessary complication. But quite simply, phones currently operate
this way. Push over GPRS can only simplify matters.

Overview of SMS
SMS, short messaging service, is a way to send short (160 character) messages from one GSM phone to
another. It can also be used to send regular text as well as advanced content like operator logos, ringing
tones, business cards and phone configurations.

SMS services are content services initiated by SMS message to certain (usually short) phone number,
which then answers with requested content, if available.

When SMS services are used, the client (mobile terminal) sends an SMS message to certain number,
usually a very short specialized number, which points to specific SMS center responsible for that number
(plus possibly many others). This SMS center then sends the message onward to specified receiver in
intra- or Internet, using an SMS center specific protocol. For example, a Nokia SMS center uses CIMD
protocol.

As practically every different kind of SMS center uses different protocol, an SMS gateway is used to
handle connections with SMS centers and to relay them onward in an unified form. Kannel’s biggest
feature is to abstract each SMSC protocol to a well-known HTTP protocol, simplifying services
deployment.

3

Chapter 1. Introduction

Figure 1-2. Logical position of SMS gateway between a phone and a content server.

An SMS gateway can also be used to relay SMS messages from one GSM network to another, if the
networks do not roam messages normally.

Kannel works as an SMS gateway, talking with many different kind of SMS centers, and relaying the
messages onward to content providers, as HTTP queries. Content providers then answer to this HTTP
query and the answer is sent back to mobile terminal, with appropriate SMS center connection using
SMS center specific protocol.

In addition to serving mobile originated (MO) SMS messages Kannel also works as an SMS push
gateway - content providers can request Kannel to send SMS messages to terminals. Kannel then
determines the correct SMS center to relay the SMS message and sends the SMS message to that SMS
center, again using SMS center specific protocol. This way the content provider does not need to know
any SMS center specific protocol, just unified Kannel SMS sending interface.

Features

WAP

• Fully compliant with WAP 1.1 specification

• Already implements some WAP 1.2 and even WAP 2.0 features.

4

Chapter 1. Introduction

WAP Push

• Supports WAP Push SI and SL

• ...

SMS

• Supports a variety of SMSC protocols, namely:

• CMG’s UCP/EMI 4.0 and 3.5

• ...

• Full support for MO and MT messages

Requirements
Kannel is being developed on Linux systems, and should be fairly easy to export to other Unix-like
systems. However, we don’t yet support other platforms, due to lack of time, although it should be
working without major problems on Windows (through Cygwin), Solaris and FreeBSD.

Kannel requires the following software environment:

• C compiler and libraries for ANSI C, with normal Unix extensions such as BSD sockets and related
tools. (GNU’s GCC tool-chain is recommended)

• The Gnome XML library (known as gnome-xml and libxml), version 2.2.5 or newer. See
http://xmlsoft.org/xml.html.

If you are installing it from your distribution’s packages, you’ll need libxml2-dev in addition to
run-time libxml2 package libraries.

• GNU Make.

• An implementation of POSIX threads (pthread.h).

• GNU Bison 1.28, if you want to modify the WMLScript compiler (a pre-generated parser is included
for those who just want to compile Kannel).

• DocBook processing tools: DocBook style-sheets, jade, jadetex, etc; see README, section
‘Documentation’, for more information (pre-formatted versions of the documentation are available,
and you can compile Kannel itself even without the documentation tools).

• GNU autoconf, if you want to modify the configuration script.

5

Chapter 1. Introduction

Hardware requirements are fluffier. Some informal benchmarking have shown that with a reasonably fast
PC architecture (e.g. 400MHz Pentium II with 128MB RAM), SMS performance’s bottleneck is always
on the SMSC side, even for example with multiple connections summing a pipeline with 400 msg/sec.
We haven’t benchmarked Kannel yet on WAP side, so there are no hard numbers.

6

Chapter 2. Installing the gateway
This chapter explains how the gateway can be installed, either from a source code package or by using a
pre-compiled binary version. The goal of this chapter is to get the gateway compiled and all the files in
the correct places; the next chapter will explain how the gateway is configured.

Note: If you are upgrading from a previous version, please look at Appendix A for any important
information.

Getting the source code
The source code to Kannel is available for download at http://www.kannel.org/download.shtml. It is
available in various formats and you can choose to download either the latest release version or the daily
snapshot of the development source tree for the next release version, depending on whether you want to
use Kannel for production use or to participate in the development.

If you’re serious about development, you probably want to use CVS, the version control system used by
the Kannel project. This allows you to participate in Kannel development much more easily than by
downloading the current daily snapshot and integrating any changes you’ve made every day. CVS does
that for you. (See the Kannel web site for more information on how to use CVS.)

Finding the documentation
The documentation for Kannel consists of three parts:

1. User’s Guide, i.e., the one you’re reading at the moment.

2. Architecture and Design, in doc/arch or at http://www.kannel.org/arch.shtml
(http://www.kannel.org/arch.shtml)

3. The README and various other text files in the source tree.

You can also find general information on Kannel’s website (http://www.kannel.org) and information
about existing problems at our bug tracker (http://bugs.kannel.org).

We intend to cover everything you need to install and use Kannel is in User’s Guide, but the guide is still
incomplete in this respect. Similarly, the Architecture and Design document should tell you everything
you need to know to dive into the sources and quickly make your own modifications. It’s not a
replacement for actually reading the source code, but it should work as a map to the source code. The
README is not supposed to be very important, nor contain much information. Instead, it will just point at
the other documentation.

7

Chapter 2. Installing the gateway

Compiling the gateway
If you are using Kannel on a supported platform, or one that is similar enough to one, compiling Kannel
should be trivial. After you have unpacked the source package of your choose, or after you have checked
out the source code from CVS, enter the following commands:

./configure

make

The configure script investigates various things on your computer for the Kannel compilation needs,
and writes out the Makefile used to compile Kannel. make then runs the commands to actually
compile Kannel.

If either command writes out an error message and stops before it finishes its job, you have a problem,
and you either need to fix it yourself, if you can, or report the problem to the Kannel project. See Chapter
11 for details.

For detailed instruction on using the configuration script, see file INSTALL. That file is a generic
documentation for configure. Kannel defines a few additional options:

• --with-defaults=type Set defaults for the other options. type is either speed or debug. The
default is speed. speed options is equivalent to --with-malloc=native

--disable-assertions, while debug is --with-malloc=checking --enable-assertions.

• --disable-docs (default is --enable-docs) Use this option if you don’t have DocBook
installed and/or you want to save some time and CPU cycles. Pre-generated documentation is available
on Kannel’s site. Default behavior is to build documentation, b.e., converting the User Guide and the
Architecture Guide from the DocBook markup language to PostScript and HTML if DocBook is
available.

• --enable-drafts (default is --disable-drafts) When building documentation, include
the sections marked as draft.

• --enable-debug (default is --disable-debug) Enable non-reentrant development time
debugging of WMLScript compiler.

• --disable-localtime (default is --enable-localtime) Write log file time stamps in
GMT, not in local time.

• --enable-assertions / --disable-assertions Turn on or off runtime assertion checking.
enable makes Kannel faster, but gives less information if it crashes. Default value is dependent on
--with-defaults.

• --with-malloc=type Select memory allocation module to use: type is native, checking, or
slow. For production use you probably want native. The slow module is more thorough than
checking, but much slower. Default value is dependent on --with-defaults.

• --enable-mutex-stats Produce information about lock contention.

• --enable-start-stop-daemon Compile the start-stop-daemon program.

• --enable-pam Enable using PAM for authentication of sendsms users for smsbox.

8

Chapter 2. Installing the gateway

• --with-mssql[=DIR] Enable using FreeTDS libraries for DBPool and DLR support on MS-SQL
and Sybase. Optional DIR specifies where to look for FreeTDS libraries and include files (defaults to
/usr/local).

• --with-mysql Enable using MySQL libraries for DBPool and DLR support.

• --with-mysql-dir=DIR Where to look for MySQL libs and header files. DIR points to the
installation of MySQL.

• --with-sdb Enable using LibSDB libraries for dlr support.

• --with-oracle Enable using Oracle OCI-Libraries for Oracle 8i/9i DBPool and DLR support.

• --with-oracle-includes=DIR Where to look for Oracle OCI-Header files.

• --with-oracle-libs=DIR Where to look for Oracle OCI-Library files.

• --with-redis Enable using Redis for DBPool and DLR support. Requires the hiredis library.

• --with-redis-dir=DIR Where to look for the hiredis library and header files.

• --with-cassandra Enable using Cassandra for DBPool and DLR support. Requires the DataStax
C/C++ driver for Apache Cassandra.

• --with-cassandra-dir=DIR Where to look for the DataStax C/C++ Cassandra library and header
files.

You may need to add compilations flags to configure:

CFLAGS=’-pthread’ ./configure

The above, for instance, seems to be required on FreeBSD. If you want to develop Kannel, you probably
want to add CFLAGS that make your compiler use warning messages. For example, for GCC:

CFLAGS=’-Wall -O2 -g’ ./configure

(You may, at your preference, use even stricter checking options.)

Installing the gateway
After you have compiled Kannel, you need to install certain programs in a suitable place. This is most
easily done by using make again:

make bindir=/path/to/directory install

Replace /path/to/directory with the pathname of the actual directory where the programs should
be installed. The programs that are installed are (as filenames from the root of the source directory):

gw/bearerbox
gw/smsbox

9

Chapter 2. Installing the gateway

gw/wapbox

The version number of the gateway is added to the file names during installation. This makes it easier to
have several versions installed, and makes it easy to go back to an older version if the new version proves
problematic.

Kannel consists of three programs called boxes: the bearer box is the interface towards the phones. It
accepts WAP and SMS messages from the phones and sends them to the other boxes. The SMS box
handles SMS gateway functionality, and the WAP box handles WAP gateway functionality. There can be
several SMS boxes and several WAP boxes running and they don’t have to run on the same host. This
makes it possible to handle much larger loads.

Using pre-compiled binary packages

Installing Kannel from RPM packages
This chapter explains how to install, upgrade and remove Kannel binary RPM packages.

Before you install Kannel, check that you have libxml2 installed on your system:

rpm -q libxml2

Installing Kannel

1. Download the binary RPM packet from the Kannel web site.

2. Install the RPM package:

rpm -ivh kannel-VERSION.i386.rpm

Upgrading Kannel

1. Download the binary RPM packet from the Kannel web site.

2. Upgrade the RPM package:

rpm -Uvh kannel-VERSION.i386.rpm

Removing Kannel

1. Remove the RPM package:

rpm -e kannel

10

Chapter 2. Installing the gateway

After you have installed Kannel from the RPM packages you should now be able to run the Kannel init.d
script that will start Kannel as a WAP gateway. Run the script as root.

/etc/rc.d/init.d/kannel start

To stop the gateway just run the same script with the stop parameter.

/etc/rc.d/init.d/kannel stop

If Kannel is already running and you just want to quickly stop and start the gateway,e.g.to set a new
configuration option, run the script with the restart parameter.

/etc/rc.d/init.d/kannel restart

If you want Kannel to run as a daemon, you need to add a symbolic link to the Kannel script from the
runlevel you want Kannel to run in. E.g. to run Kannel in runlevel 5 add symbolic links to /etc/rc.d/rc5.d/.

cd /etc/rc.d/rc5.d/

ln -s ../init.d/kannel S91kannel

ln -s ../init.d/kannel K91kannel

To run Kannel as a SMS gateway you need to edit the configuration file which is at
/etc/kannel/kannel.conf. In Kannel’s documentation directory (/usr/share/doc/kannel) there is an
example file called examples/smskannel.conf. It has some basic examples of the configuration groups
needed to run Kannel as a SMS gateway. For more detailed information please see
examples/kannel.conf in the same directory for a commented complete example, and read the
section "SMS gateway configuration" later in this same document.

The logging is disabled by default and you can enable it from the kannel.conf file. Just add the log-file
option to the group of which box you want to log.

The documentation will be installed at /usr/doc/kannel-VERSION/ or /usr/share/doc/kannel-VERSION/
depending on if you used the RedHat 6.x or a 7.x or newer package.

In the Kannel documentation directory there is a HTML file called control.html. It is an example file that
shows how to use the Kannel HTTP administration interface. It also has a template for sending SMS
messages.

Installing Kannel from DEB packages
This chapter explains how to install, upgrade and remove Kannel binary DEB packages.

Kannel’s packages are available on main Debian repository (http://packages.debian.org/kannel) although
that version may be out-of-sync with latest Kannel version.

Before you install Kannel, check that you have libxml2 installed on your system:

dpkg -l libxml2

11

Chapter 2. Installing the gateway

Installing or upgrading Kannel from Debian or Kannel repository

1. Install or upgrade the package:

apt-get install kannel

See http://kannel.org/download.shtml#debian_repository for information about kannel repository
sources.list

Installing or upgrading Kannel from a file

1. Download the binary DEB packet from the Kannel web site.

2. Log in as root:

su -

3. Install or upgrade the DEB package:

dpkg -i kannel-VERSION.deb

Removing Kannel

1. Log in as root:

2. Remove the package keeping configuration files:

dpkg --remove kannel

3. Remove the package completely:

dpkg --purge kannel

After you have installed Kannel from the DEB packages you should now be able to run the Kannel init.d
script that will start Kannel as a WAP gateway. Run the script as root.

/etc/init.d/kannel start

To stop the gateway just run the same script with the stop parameter.

/etc/init.d/kannel stop

If Kannel is already running and you just want to quickly stop and start the gateway,e.g.to set a new
configuration option, run the script with the restart parameter.

/etc/init.d/kannel restart

12

Chapter 2. Installing the gateway

If you don’t want Kannel to run as a daemon, run:

update-rc.d -f kannel remove

If you want to restore Kannel running as a daemon, you need to add a symbolic link to the Kannel script
from the runlevel you want Kannel to run in. E.g. to run Kannel in default runlevel, just run:

update-rc.d kannel defaults

Kannel package starts by default with a wapbox daemon. To activate smsbox or select which box you
want to start, edit /etc/default/kannel and comment/uncomment START_xxxBOX.

To run Kannel as a SMS gateway you need to edit the configuration file which is at
/etc/kannel/kannel.conf. In /usr/share/docs/kannel/examples/ there are example files. They have some
basic examples of the configuration groups needed to run Kannel as a SMS gateway. For more detailed
information please read the section "SMS gateway configuration" later in this same document.

The documentation will be installed at /usr/share/doc/kannel/.

In the Kannel documentation directory there is a html file called control.html. It is an example file that
shows how to use the Kannel HTTP administration interface. It also has a template for sending SMS
messages.

Additionally to kannel-VERSION.deb, there’s now an optional kannel-docs-VERSION.deb with
documentation (userguide et al) and a kannel-extras-VERSION.deb with contrib and test stuff.

If you want to test development version, use the packages called kannel-devel-*.deb.

13

Chapter 3. Using the gateway
This chapter explains how the gateway core, bearerbox, is configured and used. It covers the
configuration file, keeping an eye on the gateway while it is running, and using the HTTP interface to
control the gateway.

After this chapter there is distinct chapter for each kind of gateway use: WAP gateway, SMS gateway and
WAP Push proxy. These chapters explain the configuration and other aspects of gateway of that type.

You can configure your Kannel to be only a WAP or a SMS gateway, or to be both at the same time. You
just need to read each chapter and combine all configurations.

There is only one configuration file for all parts of Kannel, although when Kannel is distributed to
several hosts some lines from the configuration file can be removed in some hosts.

Configuring the gateway
The configuration file can be divided into three parts: bearerbox configurations, smsbox configurations
and wapbox configurations. Bearerbox part has one ’core’ group and any used SMS center groups, while
wapbox part has only one wapbox group. In smsbox part there is one smsbox group and then number of
sms-service and sendsms-user groups.

Details of each part are in an appropriate section of this documentation. The ’core’ group used by the
bearerbox is explained in this chapter, while ’wapbox’ part is in the next chapter and ’smsbox’, ’smsc’
(SMS center), ’sms-service’ and ’sendsms-user’ groups are in the SMS Kannel chapter.

Configuration file syntax
A configuration file consists of groups of configuration variables. Groups are separated by empty lines,
and each variable is defined on its own line. Each group in Kannel configuration is distinguished with a
group variable. Comments are lines that begin with a number sign (#) and are ignored (they don’t, for
example, separate groups of variables).

A variable definition line has the name of the variable, and equals sign (=) and the value of the variable.
The name of the variable can contain any characters except white space and equals. The value of the
variable is a string, with or without quotation marks () around it. Quotation marks are needed if the
variable needs to begin or end with white space or contain special characters. Normal C escape character
syntax works inside quotation marks.

Perhaps an example will make things easier to comprehend:

1 # A do-nothing service.
2 group = sms-service
3 keyword = nop
4 text = "You asked nothing and I did it!"
5
6 # Default service.
7 group = sms-service
8 keyword = default
9 text = "No services defined"

14

Chapter 3. Using the gateway

The above snippet defines the keyword nop for an SMS service, and a default action for situation when
the keyword in the SMS message does not match any defined service.

Lines 1 and 6 are comment lines. Line 5 separates the two groups. The remaining lines define variables.
The group type is defined by the group variable value.

The various variables that are understood in each type of configuration group are explained below.

Some variable values are marked as ’bool’. The value for variable can be like true, false, yes, no, on,
off, 0 or 1. Other values are treated as ’true’ while if the variable is not present at all, it is treated as being
’false’.

In order to make some configuration lines more readable you may use the delimiter ’\’ at the end of a line
to wrap and concatenate the next line up to the current line. Here is an example:

1 # A group with a wrapped alias line
2 group = sms-service
3 keyword = hello
4 aliases = hallo;haalloo;\
5 heelloo;haelloo;healloo
5 text = "Hello world!"

The above example shows how a list for various alias keywords is wrapped to two lines using the line
wrap delimiter. In order to use the delimiter ’\’ itself, you need to escape it via a prefixed ’\’ itself. So this
is ’\\’ to escape the wrapping function and use the character in the string.

Inclusion of configuration files
A configuration file may contain a special directive called include to include other file or a directory
with files to the configuration processing.

This allows to segment the specific configuration groups required for several services and boxes to
different files and hence to have more control in larger setups.

Here is an example that illustrates the include statement :

group = core
admin-port = 13000
wapbox-port = 13002
admin-password = bar
wdp-interface-name = "*"
log-file = "/var/log/bearerbox.log"
log-level = 1
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1"

include = "wapbox.conf"

include = "configurations"

Above is the main kannel.conf configuration file that includes the following wapbox.conf file with
all required directives for the specific box, and a configurations directory which may include more
files to include.

15

Chapter 3. Using the gateway

group = wapbox
bearerbox-host = localhost
log-file = "/var/log/wapbox.log"
log-level = 0
syslog-level = none

The above include statement may be defined at any point in the configuration file and at any inclusion
depth. Hence you can cascade numerous inclusions if necessary.

At process start time inclusion of configuration files breaks if either the included file can not be opened
and processed or the included file has been processed already in the stack and a recursive cycling has
been detected.

Core configuration
Configuration for Kannel MUST always include a group for general bearerbox configuration. This group
is named as ’core’ in configuration file, and should be the first group in the configuration file.

As its simplest form, ’core’ group looks like this:

group = core
admin-port = 13000
admin-password = f00bar

Naturally this is not sufficient for any real use, as you want to use Kannel as an SMS gateway, or WAP
gateway, or both. Thus, one or more of the optional configuration variables are used. In following list (as
in any other similar lists), all mandatory variables are marked with (m), while conditionally mandatory
(variables which must be set in certain cases) are marked with (c).

Table 3-1. Core Group Variables

Variable Value Description
group (m) core This is a mandatory variable

admin-port (m) port-number

The port number in which the
bearerbox listens to HTTP
administration commands. It is
NOT the same as the HTTP port
of the local HTTP server, just
invent any port, but it must be
over 1023 unless you are running
Kannel as a root process (not
recommended)

16

Chapter 3. Using the gateway

Variable Value Description

admin-port-ssl (o) bool

If set to true a SSL-enabled
administration HTTP server will
be used instead of the default
insecure plain HTTP server. To
access the administration pages
you will have to use a HTTP
client that is capable of talking to
such a server. Use the "https://"
scheme to access the secured
HTTP server. Defaults to "no".

admin-password (m) string

Password for HTTP
administration commands (see
below)

status-password string

Password to request Kannel
status. If not set, no password is
required, and if set, either this or
admin-password can be used

admin-deny-ip IP-list

These lists can be used to
prevent connection from given IP
addresses. Each list can have
several addresses, separated with
semicolons (’;’). An asterisk
(’*’) can be used as a wild-card
in a place of any ONE number,
so *.*.*.* matches any IP.

admin-allow-ip

smsbox-interface (o) string

If this is set, the smsbox listener
will only bind to a specified
address. For example:
"127.0.0.1".

smsbox-port (c) port-number

This is the port number to which
the smsboxes, if any, connect. As
with admin-port, this can be
anything you want. Must be set if
you want to handle any SMS
traffic.

17

Chapter 3. Using the gateway

Variable Value Description

smsbox-port-ssl (o) bool

If set to true, the smsbox
connection module will be
SSL-enabled. Your smsboxes
will have to connect using SSL
to the bearerbox then. This is
used to secure communication
between bearerbox and smsboxes
in case they are in separate
networks operated and the TCP
communication is not secured on
a lower network layer. Defaults
to "no".

wapbox-port (c) port-number

Like smsbox-port, but for
wapbox-connections. If not set,
Kannel cannot handle WAP
traffic

wapbox-port-ssl (o) bool

If set to true, the wapbox
connection module will be
SSL-enabled. Your wapboxes
will have to connect using SSL
to the bearerbox then. This is
used to secure communication
between bearerbox and
wapboxes in case they are in
separate networks operated and
the TCP communication is not
secured on a lower network
layer. Defaults to "no".

box-deny-ip IP-list

These lists can be used to
prevent box connections from
given IP addresses. Each list can
have several addresses, separated
with semicolons (’;’). An asterisk
(’*’) can be used as a wild-card
in place of any ONE number, so
..*.* matches any IP.

box-allow-ip

udp-deny-ip IP-list

These lists can be used to
prevent UDP packets from given
IP addresses, thus preventing
unwanted use of the WAP
gateway. Used the same way as
box-deny-ip and
box-allow-ip.

18

Chapter 3. Using the gateway

Variable Value Description
udp-allow-ip

wdp-interface-name (c) IP or ’*’

If this is set, Kannel listens to
WAP UDP packets incoming to
ports 9200-9208, bound to given
IP. If no specific IP is needed, use
just an asterisk (’*’). If UDP
messages are listened to,
wapbox-port variable MUST be
set.

log-file filename

A file in which to write a log.
This in addition to stdout and
any log file defined in command
line. Log-file in ’core’ group is
only used by the bearerbox.

log-level number 0..5

Minimum level of log-file events
logged. 0 is for ’debug’, 1 ’info’,
2 ’warning, 3 ’error’ and 4
’panic’ (see Command Line
Options)

access-log filename

A file in which information
about received/sent SMS
messages is stored. Access-log in
’core’ group is only used by the
bearerbox.

access-log-clean boolean

Indicates if access-log will
contain standard ’markers’,
which means the ’Log begins’,
’Log ends’ markers and the
prefixed timestamp. This config
directive should be set to ’true’ if
a custom logging format is
desired without a prefixed default
timestamp.

19

Chapter 3. Using the gateway

Variable Value Description

access-log-format string

String defining a custom log file
line format. May use escape
codes as defined later on to
substitute values of the messages
into the log entry. If no custom
log format is used the standard
format will be: "%t %l

[SMSC:%i] [SVC:%n]

[ACT:%A] [BINF:%B]

[FID:%F] [META:%D]

[from:%p] [to:%P]

[flags:%m:%c:%M:%C:%d]

[msg:%L:%b] [udh:%U:%u]"

syslog-level number

Messages of this log level or
higher will also be sent to syslog,
the UNIX system log daemon. If
not explicitly set with
syslog-facility, it logs
under the ’daemon’ category.
The default is not to use syslog,
and you can set that explicitly by
setting syslog-level to
’none’.

syslog-facility string

The syslog facility to send the
syslog entries to. The default is
’daemon’.

20

Chapter 3. Using the gateway

Variable Value Description

unified-prefix prefix-list

String to unify received phone
numbers, for SMSC routing and
to ensure that SMS centers can
handle them properly. This is
applied to ’sender’ number when
receiving SMS messages from
SMS Center and for ’receiver’
number when receiving messages
from smsbox (either sendsms
message or reply to original
message). Format is that first
comes the unified prefix, then all
prefixes which are replaced by
the unified prefix, separated with
comma (’,’). For example, for
Finland an unified-prefix
"+358,00358,0;+,00" should do
the trick. If there are several
unified prefixes, separate their
rules with semicolon (’;’), like
"+35850,050;+35840,040". Note
that prefix routing is next to
useless now that there are SMSC
ID entries. To remove prefixes,
use like
"-,+35850,050;-,+35840,040".

white-list URL
(Deprecated, see
white-list-sender).

white-list-regex POSIX regular expression

(Deprecated, see
white-list-sender-regex).

black-list URL
(Deprecated, see
black-list-sender).

black-list-regex POSIX regular expression

(Deprecated, see
black-list-sender-regex).

21

Chapter 3. Using the gateway

Variable Value Description

white-list-sender URL

Load a list of accepted senders
of SMS messages. If a sender of
an SMS message is not in this
list, any message received from
the SMS Center, or tried to be
delivered to the SMS Center is
rejected. See notes of phone
number format from numhash.h
header file. NOTE: the system
has only a precision of last 9 or
18 digits of phone numbers, so
beware!

white-list-sender-regex POSIX regular expression

A regular expression defining
the set of accepted senders. See
section on Regular Expressions
for details.

black-list-sender URL

As white-list-sender, but SMS
messages from these sender
numbers are automatically
rejected.

black-list-sender-regex POSIX regular expression

A regular expression defining
the set of rejected senders. See
section on Regular Expressions
for details.

white-list-receiver URL

Load a list of accepted receiver
of SMS messages. If a receiver
of an SMS message is not in this
list, any message received from
the SMS Center, or tried to be
delivered to the SMS Center is
rejected. See notes of phone
number format from numhash.h
header file. NOTE: the system
has only a precision of last 9 or
18 digits of phone numbers, so
beware!

white-list-receiver-regex POSIX regular expression

A regular expression defining
the set of accepted receivers. See
section on Regular Expressions
for details.

black-list-receiver URL

As white-list, but SMS messages
from these receiver numbers are
automatically rejected.

22

Chapter 3. Using the gateway

Variable Value Description

black-list-receiver-regex POSIX regular expression

A regular expression defining
the set of rejected receivers. See
section on Regular Expressions
for details.

store-type filename

Kannel can use store subsystem
that means storing messages on
hard disk or in a remote key store
until they are successfully
handled. By using this
subsystem, no SMS messages are
lost in Kannel even by crash, but
theoretically some messages can
duplicate when system is taken
down violently. This variable
defines a type of backend used
for store subsystem. Now two
types are supported: a) file:
writes store into one single file b)
spool: writes store into spool
directory (one file for each
message) c) redis: writes store
into a redis key storage. For redis
as message storage you will need
a group =

redis-connection and a
group = store-db

configuration group that define
the connection to the redis server
and the table name to be used.
See file
doc/examples/store-redis.conf

for an example config secttion.

store-location filename

Depends on store-type

option used, it is ether file or
spool directory, or none if redis is
used as storage subsystem.

store-dump-freq seconds

Approximated frequency how
often the memory dump of
current pending messages are
stored to store-file, providing
something has happened.
Defaults to 10 seconds if not set.

http-proxy-host hostname
Enable the use of an HTTP

proxy for all HTTP requests.

23

Chapter 3. Using the gateway

Variable Value Description
http-proxy-port port-number

http-proxy-exceptions URL-list

A list of excluded hosts from
being used via a proxy. Separate
each entry with space.

http-proxy-exceptions-regexUNIX regular expression

Same as http-proxy-exceptions
but match against UNIX regular
expression.

http-proxy-username username

Username for authenticating
proxy use, for proxies that
require this.

http-proxy-password URL-list

Password for authenticating
proxy use, for proxies that
require this.

ssl-client-certkey-file

(c)

filename

A PEM encoded SSL certificate
and private key file to be used
with SSL client connections.
This certificate is used for the
HTTPS client side only, i.e. for
SMS service requests to
SSL-enabled HTTP servers.

ssl-server-cert-file (c) filename

A PEM encoded SSL certificate
file to be used with SSL server
connections. This certificate is
used for the HTTPS server side
only, i.e. for the administration
HTTP server and the HTTP
interface to send SMS messages.

ssl-server-key-file (c) filename

A PEM encoded SSL private
key file to be used with SSL
server connections. This key is
associated to the specified
certificate and is used for the
HTTPS server side only.

ssl-trusted-ca-file filename

This file contains the certificates
Kannel is willing to trust when
working as a HTTPS client. If
this option is not set, certificates
are not validated and those the
identity of the server is not
proven.

24

Chapter 3. Using the gateway

Variable Value Description

ssl-client-cipher-list filename

Defines the list of encryption
suites and ciphers to be used for
client side connections. For
further details please see
https://www.openssl.org/docs/manmaster/man1/ciphers.html

ssl-server-cipher-list filename

Defines the list of encryption
suites and ciphers to be used for
server side connections. For
further details please see
https://www.openssl.org/docs/manmaster/man1/ciphers.html

dlr-storage type

Defines the way DLRs are
stored. Natively in-memory
storage is supported, which is
very fast, but has no persistancy.
This means you will loose all
your temporary DLR information
on bearebox re-start. In addition
a spool directory approach is
natively supported, which
garantees persistancy with a
reasonable performance,
depending on your disk IO
performance. If you have
build-in external DLR storage
support, i.e. using MySQL you
may define here the alternative
storage type like mysql.
Supported types are: internal,
spool, mysql, pgsql, sdb,
mssql, sqlite3, oracle,
redis and cassandra. By
default this is set to internal.

dlr-spool filename

Depends on dlr-storage =

spool option used, it is the spool
directory to use for DLR storage
data.

maximum-queue-length number of messages

(Deprecated, see
sms-incoming-queue-limit).

25

Chapter 3. Using the gateway

Variable Value Description

sms-incoming-queue-limit number of messages

Set maximum size of incoming
message queue. After number of
messages has hit this value,
Kannel began to discard them.
Value 0 means giving strict
priority to outgoing messages.
-1, default, means that the queue
of infinite length is accepted.
(This works with any normal
input, use this variable only
when Kannel message queues
grow very long).

sms-outgoing-queue-limit number of messages

Set maximum size of outgoing
message queue. After number of
messages has hit this value,
Kannel began to discard them.
The default value, 1 million,
works for most installations.

smsbox-max-pending number of messages

Maximum number of pending
messages on the line to smsbox
compatible boxes.

sms-resend-freq seconds

Frequency for the SMS resend
thread in which temporarily
failed or queued messages will
be resent. Defaults to 60 seconds.

sms-resend-retry number

Maximum retry attempts for the
temporarily failed messages.
Defaults to -1, means: unlimited.

sms-combine-concatenated-moboolean

Whether Kannel should attempt
to combine concatenated MO
SMS prior to passing them over
to smsbox. Default is true

sms-combine-concatenated-mo-timeoutseconds

How long to wait for all
concatenated message parts to
arrive before timeouting. Default
1800 seconds.

http-timeout seconds

Sets socket timeout in seconds
for outgoing client http
connections. Optional. Defaults
to 240 seconds.

26

Chapter 3. Using the gateway

A sample more complex ’core’ group could be something like this:

group = core
admin-port = 13000
admin-password = f00bar
status-password = sTat
admin-deny-ip = "*.*.*.*"
admin-allow-ip = "127.0.0.1;200.100.0.*"
smsbox-port = 13003
wapbox-port = 13004
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1;200.100.0.*"
wdp-interface-name = "*"
log-file = "kannel.log"
log-level = 1
access-log = "kannel.access"
unified-prefix = "+358,00358,0;+,00"
white-list = "http://localhost/whitelist.txt"

Running Kannel
To start the gateway, you need to start each box you need. You always need the bearer box, and
depending on whether you want WAP and SMS gateways you need to start the WAP and SMS boxes. If
you want, you can run several of them, but we’ll explain the simple case of only running one each.

Starting the gateway
After you have compiled Kannel and edited configuration file for your taste, you can either run Kannel
from command line or use supplied start-stop-daemon and run_kannel_box programs to use it as
a daemon service (more documentation about that later).

If you cannot or do not know how to set up daemon systems or just want to test Kannel, you probably
want to start it from command line. This means that you probably want to have one terminal window for
each box you want to start (xterm or screen will do fine). To start the bearerbox, give the following
command:

./bearerbox -v 1 [config-file]

The -v 1 sets the logging level to INFO. This way, you won’t see a large amount of debugging output
(the default is DEBUG). Full explanation of Kannel command line arguments is below.

[config-file] is the name of the configuration file you are using with Kannel. The basic distribution packet
comes with two sample configuration files, smskannel.conf and wapkannel.conf (in gw sub
directory), of which the first one is for testing out SMS Kannel and the second one for setting up a WAP
Kannel. Feel free to edit those configuration files to set up your own specialized system.

27

Chapter 3. Using the gateway

After the bearer box, you can start the WAP box:

./wapbox -v 1 [config-file]

or the SMS box:

./smsbox -v 1 [config-file]

or both, of course. The order does not matter, except that you need to start the bearer box before the other
boxes. Without the bearer box, the other boxes won’t even start.

Command line options
Bearerbox, smsbox and wapbox each accept certain command line options and arguments when they are
launched. These arguments are:

Table 3-2. Kannel Command Line Options

Print the version of the Kannel binary.

--version

-v <level>

Set verbosity level for stdout (screen) logging.
Default is 0, which means ’debug’. 1 is ’info, 2
’warning’, 3 ’error’ and 4 ’panic’--verbosity <level>

-D <places>

Set debug-places for ’debug’ level output.

--debug <places>

-F <file-name>

Log to file named file-name, too. Does not overrun
or affect any log-file defined in configuration file.

--logfile <file-name>

-V <level>

Set verbosity level for that extra log-file (default
0, which means ’debug’). Does not affect verbosity
level of the log-file defined in configuration file,
not verbosity level of the stdout output.

--fileverbosity <level>

-S

Start the system initially at SUSPENDED state
(see below, bearerbox only)

--suspended

-I

Start the system initially at ISOLATED state (see
below, bearerbox only)

--isolated

28

Chapter 3. Using the gateway

-H

Only try to open HTTP sendsms interface; if it
fails, only warn about that, do not exit. (smsbox
only)--tryhttp

-g

Dump all known config groups and config keys to
stdout and exit.

--generate

-u <username>

Change process user-id to the given.

--user <username>

-p <filename>

Write process PID to the given file.

--pid-file <filename>

-d

Start process as daemon (detached from a current
shell session). Note: Process will change CWD
(Current working directory) to /, therefore you
should ensure that all paths to
binary/config/config-includes are absolute instead
of relative.

--daemonize

-P

Start watcher process. This process watch a child
process and if child process crashed will restart
them automatically.--parachute

-X <scriptname>

Execute a given shell script or binary when child
process crash detected. This option is usable only
with --parachute/-P. Script will be executed
with 2 arguments: scriptname ’processname’
’respawn-count’.

--panic-script <scriptname>

Kannel statuses
In Kannel, there are four states for the program (which currently directly only apply to bearerbox):

a. Running. The gateway accepts, proceeds and relies messages normally. This is the default state for
the bearerbox.

b. Suspended. The gateway does not accept any new messages from SMS centers nor from UDP ports.
Neither does it accept new sms and wapbox connections nor sends any messages already in the
system onward.

c. Isolated. In this state, the gateway does not accept any messages from external message providers,
which means SMS Centers and UDP ports. It still processes any messages in the system and can
accept new messages from sendsms interface in smsbox.

29

Chapter 3. Using the gateway

d. Full. Gateway does not accept any messages from SMS centers, because maximum-queue-length
is achieved.

e. Shutdown. When the gateway is brought down, it does not accept any new messages from SMS
centers and UDP ports, but processes all systems already in the system. As soon as any queues are
emptied, the system exits

The state can be changed via HTTP administration interface (see below), and shutdown can also be
initiated via TERM or INT signal from terminal. In addition, the bearerbox can be started already in
suspended or isolated state with -S or -I command line option, see above.

HTTP administration
Kannel can be controlled via an HTTP administration interface. All commands are done as normal HTTP
queries, so they can be easily done from command line like this:

lynx -dump "http://localhost:12345/shutdown?password=bar"

...in which the ’12345’ is the configured admin-port in Kannel configuration file (see above). For most
commands, admin-password is required as a argument as shown above. In addition, HTTP administration
can be denied from certain IP addresses, as explained in configuration chapter.

Note that you can use these commands with WAP terminal, too, but if you use it through the same
Kannel, replies to various suspend commands never arrive nor can you restart it via WAP anymore.

Table 3-3. Kannel HTTP Administration Commands

status or status.txt

Get the current status of the gateway in a text
version. Tells the current state (see above) and
total number of messages relied and queuing in the
system right now. Also lists the total number of
smsbox and wapbox connections. No password
required, unless status-password set, in which
case either that or main admin password must be
supplied.

status.html HTML version of status

status.xml XML version of status

status.wml WML version of status

store-status or store-status.txt

Get the current content of the store queue of the
gateway in a text version. No password required,
unless status-password set, in which case
either that or main admin password must be
supplied.

store-status.html HTML version of store-status

store-status.xml XML version of store-status

suspend

Set Kannel state as ’suspended’ (see above).
Password required.

30

Chapter 3. Using the gateway

isolate

Set Kannel state as ’isolated’ (see above).
Password required.

resume

Set Kannel state as ’running’ if it is suspended or
isolated. Password required.

shutdown

Bring down the gateway, by setting state to
’shutdown’. After a shutdown is initiated, there is
no other chance to resume normal operation.
However, ’status’ command still works. Password
required. If shutdown is sent for a second time, the
gateway is forced down, even if it has still
messages in queue.

flush-dlr

If Kannel state is ’suspended’ this will flush all
queued DLR messages in the current storage
space. Password required.

start-smsc

Re-start a single SMSC link. Password required.
Additionally the smsc parameter must be given to
identify which smsc-admin-id should be
re-started. The configuration for the SMSC link is
re-read from disk before the action is performed.

stop-smsc

Shutdown a single SMSC link. Password
required. Additionally the smsc parameter must be
given (see above).

add-smsc

Adds an SMSC link previously removed or
created after the service was started. Password
required. Additionally the smsc parameter must be
given (see above).

remove-smsc

Removes an existing SMSC link. Password
required. Additionally the smsc parameter must be
given (see above). If you want a permanent
removal, you should also remove the entry from
the configuration file or it will be recreated after a
service restart.

restart

This is the hard restarting version, where we fully
stop the bearerbox and then initiate from ground
up. Beware that you loose the smsbox connections
in such a case.

31

Chapter 3. Using the gateway

graceful-restart

Re-start bearerbox gracefully, hence only the
changes in the configuration for the SMSC
connections are performed. I.e. an added SMSC
group will be start, and a removed SMSC group
will be shutdown and destroyed. Any unchanged
SMSC connection keeps on running without
interruption. Password required. This is the soft
restarting version, where we keep all internal parts
of the bearebox running, including the smsbox
connections. The same graceful restart can be
initiated by sending a SIGHUP signal to the
bearerbox daemon process.

log-level

Set Kannel log-level of log-files while running.
This allows you to change the current log-level of
the log-files on the fly. This includes the main
event log and the SMSC specific logs, if any exist.

reload-lists

Re-loads the ’white-list’ and ’black-list’ URLs
provided in the core group. This allows Kannel to
keep running while the remote lists change and
signal bearerbox to re-load them on the fly.

remove-message

Removes the message with the give id (an UUID)
from the local storage subsystem.

32

Chapter 4. Setting up a WAP gateway
This chapter tells you how to set Kannel up as a WAP gateway.

WAP gateway configuration
To set up a WAP Kannel, you have to edit the ’core’ group in the configuration file, and define the
’wapbox’ group.

You must set following variables for the ’core’ group: wapbox-port and wdp-interface-name. See
previous chapter about details of these variables.

With standard distribution, a sample configuration file wapkannel.conf is supplied. You may want to
take a look at that when setting up a WAP Kannel.

Wapbox group
If you have set wapbox-port variable in the ’core’ configuration group, you MUST supply a ’wapbox’
group.

The simplest working ’wapbox’ group looks like this:

group = wapbox
bearerbox-host = localhost

There is, however, multiple optional variables for the ’wapbox’ group.

Table 4-1. Wapbox Group Variables

Variable Value Description
group (m) wapbox This is mandatory variable

bearerbox-host (m) hostname

The machine in which the
bearerbox is.

timer-freq value-in-seconds

The frequency of how often
timers are checked out. Default is
1

http-interface-name IP address

If this is set then Kannel do
outgoing HTTP requests using
this interface.

33

Chapter 4. Setting up a WAP gateway

Variable Value Description

map-url URL-pair

The pair is separated with space.
Adds a single mapping for the
left side URL to the given
destination. If you append an
asterisk ‘*’ to the left side URL,
its prefix Is matched against the
incoming URL. Whenever the
prefix matches, the URL will be
replaced completely by the right
side. In addition, if if you append
an asterisk to the right side URL,
the part of the incoming URL
coming after the prefix, will be
appended to the right side URL.
Thus, for a line: map-url =
"http://source/*
http://destination/*" and an
incoming URL of
"http://source/some/path", the
result will be
"http://destination/some/path"

map-url-max number

If you need more than one
mapping, set this to the highest
number mapping you need. The
default gives you 10 mappings,
numbered from 0 to 9. Default: 9

map-url-0 URL-pair

Adds a mapping for the left side
URL to the given destination
URL. Repeat these lines, with 0
replaced by a number up to
map-url-max, if you need several
mappings.

device-home URL

Adds a mapping for the URL
DEVICE:home (as sent by
Phone.com browsers) to the
given destination URL. There is
no default mapping. NOTE: the
mapping is added with both
asterisks, as described above for
the "map-url" setting. Thus, the
above example line is equivalent
to writing map-url =
"DEVICE:home*
http://some.where/*"

34

Chapter 4. Setting up a WAP gateway

Variable Value Description

log-file filename
As with bearerbox ’core’ group.

log-level number 0..5

access-log filename

A file containing all requested
URLs from clients while wapbox
operation, including client IP,
HTTP server User-Agent string,
HTTP response code, size of
reply.

access-log-clean boolean

Indicates if access-log will
contain standard ’markers’,
which means the ’Log begins’,
’Log ends’ markers and the
prefixed timestamp. This config
directive should be set to ’true’ if
a custom logging format is
desired without a prefixed default
timestamp.

access-log-time string

Determine which timezone we
use for access logging. Use ’gmt’
for GMT time, anything else will
use local time. Default is local
time.

syslog-level number

Messages of this log level or
higher will also be sent to syslog,
the UNIX system log daemon. If
not explicitly set with
syslog-facility, it logs
under the ’daemon’ category.
The default is not to use syslog,
and you can set that explicitly by
setting syslog-level to
’none’.

syslog-facility string

The syslog facility to send the
syslog entries to. The default is
’daemon’.

smart-errors bool

If set wapbox will return a valid
WML deck describing the error
that occurred while processing an
WSP request. This may be used
to have a smarter gateway and let
the user know what happened
actually.

35

Chapter 4. Setting up a WAP gateway

Variable Value Description

wml-strict bool

If set wapbox will use a strict
policy in XML parsing the WML
deck. If not set it will be more
relaxing and let the XML parser
recover from parsing errors. This
has mainly impacts in how smart
the WML deck and it’s character
set encoding can be adopted,
even while you used an encoding
that does not fit the XML
preamble. BEWARE: This may
be a vulnerability in your
wapbox for large bogus WML
input. Therefore this defaults to
’yes’, strict parsing. is assumed.

http-timeout seconds

Sets socket timeout in seconds
for outgoing client http
connections. Optional. Defaults
to 240 seconds.

Running WAP gateway
WAP Gateway is ran as explained in previous chapter.

Checking whether the WAP gateway is alive
You can check whether the WAP gateway (both the bearerbox and the wapbox) is alive by fetching the
URL kannel:alive.

36

Chapter 5. Setting up wtls security
This chapter tells you how to set Kannel up to handle wtls traffic.

wtls group is optional and single. The prerequisites for this group are to have defined a wapbox group,
and a pair of SSL certificates available. Instructions on how to create self-signed 1024-bit RSA
certificates are in Appendix B.

Current imlementation provides for the following functionality:

A. Supported MACs:

• SHA_0

• SHA_40

• SHA_80

• SHA_NOLIMIT

• MD5_40

• MD5_80

• MD5_NOLIMIT

Missing:

• SHA_XOR_40

B. Supported Ciphers:

• RC5_CBC_40

• RC5_CBC_56

• RC5_CBC

• DES_CBC

• DES_CBC_40

Missing:

• NULL_bulk

• TRIPLE_DES_CBC_EDE

• IDEA_CBC_40

• IDEA_CBC_56

• IDEA_CBC

C. Supported Keys:

• RSA_anon

Missing:

37

Chapter 5. Setting up wtls security

• RSA_anon_512

• RSA_anon_768

• RSA_NOLIMIT

• RSA_512

• RSA_768

• ECDH_anon

• ECDH_anon_113

• ECDH_anon_131

• ECDH_ECDSA_NOLIMIT

Keys might seem a shortcoming, but all mobiles support RSA_anon. Some of the other RSA_anon
keys (i.e. RSA_anon_512, RSA_anon_768) are propably supported as well, just haven’t been tested
yet.

D. All wtls states except:

• Suspend/Resume wtls session

• Cipher change when already connected. In practice this is handled through another client hello,
while already connected to the same client

The simplest working wtls group looks like this:

group = wtls
certificate-file = /etc/kannel/server.crt
privatekey-file = /etc/kannel/server.key

Can also be the same single combined pem file with both certificate and privatekey parts. The complete
variable list for the wtls group is:

Wtls configuration

Table 5-1. Wtls Group Variables

Variable Value Description
group (m) wtls This is mandatory variable

certificate-file (m) filename Public key SSL certificate.

privatekey-file (m) filename Private key SSL certificate.

privatekey-password (o) Phrase

Optional. Needed only if private
key was created with a
passphrase.

38

Chapter 6. Setting up MSISDN provisioning for
WAP gateway

This chapter tells you how to set Kannel up to deliver the MSISDN number of the WAP device using the
WAP gateway.

Mostly this feature is interested because the WAP protocol stack itself does not provide such a protocol
layer bridging of information. In case you want to know which unique MSISDN is used by the WAP
device your HTTP application is currently interacting, then you can pick this information from a
RADIUS server that is used by a NAS (network access server) for authentication and accounting
purposes.

Kannel provides a RADIUS accounting proxy thread inside wapbox which holds a mapping table for the
dynamically assigned (DHCP) IP addresses of the WAP clients and their MSISDN numbers provided to
the NAS device.

Beware that you HAVE TO to be in control of the NAS to configure it to use Kannel’s wapbox as
RADIUS accounting server. You can not use MSISDN provisioning via Kannel’s RADIUS accounting
proxy if you can not forward the accounting packets to Kannel’s accounting proxy thread. So obviously
this feature is for operators and people who have dedicated dial-in servers (NAS).

RADIUS accounting proxy configuration
To set up the RADIUS accounting proxy thread inside Kannel you have to define a ’radius-acct’ group.

RADIUS-Acct configuration
The simplest working ’radius-acct’ group looks like this:

group = radius-acct
our-port = 1646
secret-nas = radius

This example does not forward any accounting packets to a remote RADIUS server. There is, however,
multiple optional variables for the ’radius-acct’ group.

Table 6-1. RADIUS-Acct Group Variables

Variable Value Description

group (m) radius-acct

This is mandatory variable if
you want to have Kannel’s
RADIUS accounting proxy
thread to be active inside
wapbox.

39

Chapter 6. Setting up MSISDN provisioning for WAP gateway

Variable Value Description

secret-nas (m) string

Specifies the shared secret
between NAS and our RADIUS
accounting proxy.

secret-radius string

Specifies the shared secret
between our RADIUS
accounting proxy and the remote
RADIUS server itself in case we
are forwarding packets.

our-host IP address

Specifies the local interface
where our-port value will bind
to. (defaults to 0.0.0.0)

remote-host FQDN or IP address

Specifies the remote RADIUS
server to which we forward the
accounting packets. If none is
given, then no forwarding of
accounting packets is performed.

our-port number

Specifies the port to which our
RADIUS accounting proxy
thread will listen to. (defaults
according to RFC2866 to 1813)

remote-port number

Specifies the port to which our
RADIUS accounting proxy
thread will forward any packets
to the remote-host. (defaults
according to RFC2866 to 1813)

remote-timeout number

Specifies the timeout value in
milliseconds for waiting on a
response from the remote
RADIUS server. (defaults to 40
msecs.)

nas-ports number

Specifies how many possible
clients can connect
simultaneously to the NAS. This
value is used to initialize the
mapping hash table. If does not
require to be exact, because the
table grows automatically if
required. (defaults to 30)

40

Chapter 6. Setting up MSISDN provisioning for WAP gateway

Variable Value Description

unified-prefix prefix-list

String to unify provided phone
numbers from NAS. Format is
that first comes the unified prefix,
then all prefixes which are
replaced by the unified prefix,
separated with comma (’,’). For
example, for Finland an
unified-prefix
"+358,00358,0;+,00" should do
the trick. If there are several
unified prefixes, separate their
rules with semicolon (’;’), like
"+35850,050;+35840,040".

Using the MSISDN provisioning on HTTP server side
Kannel’s wapbox will include a specific HTTP header in the HTTP request issued to the URL provided
by the WAP client. That HTTP header is X-WAP-Network-Client-MSISDN. It will carry as value the
MSISDN of the WAP client if the RADIUS accounting proxy has received a valid accounting packet
from the NAS that provided the client IP.

41

Chapter 7. Setting up a SMS Gateway
This chapter is a more detailed guide on how to set up Kannel as an SMS gateway.

Required components
To set up an SMS gateway, you need, in addition to a machine running Kannel, access to (an operator’s)
SMS center, or possibly to multiple ones. The list of supported SMS centers and their configuration
variables is below.

If you do not have such access, you can still use Kannel as an SMS gateway via phone-as-SMSC feature,
by using a GSM phone as a virtual SMS center.

In addition to an SMS center (real or virtual), you need some server to handle any SMS requests
received. This server then has simple or more complex cgi-bins, programs or scripts to serve HTTP
requests generated by Kannel in response to received SMS messages. These services can also initiate
SMS push via Kannel smsbox HTTP sendsms interface.

SMS gateway configuration
To set up a SMS Kannel, you have to edit the ’core’ group in the configuration file, and define an
’smsbox’ group plus one or more ’sms-service’ groups, plus possibly one or more ’sendsms-user’ groups.

For the ’core’ group, you must set the following variable: smsbox-port. In addition, you may be
interested to set unified-prefix, white-list and/or black-list variables. See above for details
of these variables.

A sample configuration file smskannel.conf is supplied with the standard distribution. You may want
to take a look at that when setting up an SMS Kannel.

SMS centers
To set up the SMS center at Kannel, you have to add a ’smsc’ group into configuration file. This group
must include all the data needed to connect that SMS center. You may also want to define an ID
(identification) name for the SMSC, for logging and routing purposes.

SMSC ID is an abstract name for the connection. It can be anything you like, but you should avoid any
special characters. You do not need to use ID, but rely on SMS center IP address and other information.
However, if you use the ID, you do not need to re-define sms-services nor routing systems if the IP of the
SMS Center is changed, for example.

Common ’smsc’ group variables are defined in the following table. The first two (group and smsc) are
mandatory, but rest can be used if needed.

Table 7-1. SMSC Group Variables

42

Chapter 7. Setting up a SMS Gateway

Variable Value Description
group (m) smsc This is a mandatory variable

smsc (m) string

Identifies the SMS center type.
See below for a complete list.

smsc-id string

An optional name or id for the
smsc. Any string is acceptable,
but semicolon ’;’ may cause
problems, so avoid it and any
other special non-alphabet
characters. This ’id’ is written
into log files and can be used to
route SMS messages, and to
specify the used SMS-service.
Several SMSCs can have the
same id. The name is
case-insensitive. Note that if
SMS Center connection has an
assigned SMSC ID, it does NOT
automatically mean that
messages with identical SMSC
ID are routed to it; instead
configuration variables
denied-smsc-id,
allowed-smsc-id and
preferred-smsc-id is used
for that. If you want to use
Delivery Reports, you must
define this.

smsc-admin-id string

An optional id for the smsc to be
used on administrative
commands. This allows
commands targeted to individual
binds even if they share the same
smsc-id (for load balancing
scenarios, for example). Any
string is acceptable, but
semicolon ’;’ may cause
problems, so avoid it and any
other special non-alphabet
characters. Several SMSCs can
have the same admin-id, though
it’s not recommended. The name
is case-insensitive.

43

Chapter 7. Setting up a SMS Gateway

Variable Value Description

throughput float (messages/sec)

If SMSC requires that Kannel
limits the number of messages
per second, use this variable.
This is considered as active
throttling. (optional)

denied-smsc-id id-list

SMS messages with SMSC ID
equal to any of the IDs in this list
are never routed to this SMSC.
Multiple entries are separated
with semicolons (’;’)

allowed-smsc-id id-list

This list is opposite to previous:
only SMS messages with SMSC
ID in this list are ever routed to
this SMSC. Multiple entries are
separated with semicolons (’;’)

preferred-smsc-id id-list

SMS messages with SMSC ID
from this list are sent to this
SMSC instead than to SMSC
without that ID as preferred.
Multiple entries are separated
with semicolons (’;’)

allowed-prefix prefix-list

A list of phone number prefixes
which are accepted to be sent
through this SMSC. Multiple
entries are separated with
semicolon (’;’). For example,
"040;050" prevents sending of
any SMS message with prefix of
040 or 050 through this SMSC.
If denied-prefix is unset, only
these numbers are allowed. If set,
number are allowed if present in
allowed or not in denied list.

denied-prefix prefix-list

A list of phone number prefixes
which are NOT accepted to be
sent through this SMSC.

preferred-prefix prefix-list

As denied-prefix, but SMS
messages with receiver starting
with any of these prefixes are
preferably sent through this
SMSC. In a case of multiple
preferences, one is selected at
random (also if there are
preferences, SMSC is selected
randomly)

44

Chapter 7. Setting up a SMS Gateway

Variable Value Description

unified-prefix prefix-list

String to unify received phone
numbers, for SMSC routing and
to ensure that SMS centers can
handle them properly. This is
applied to ’sender’ number when
receiving SMS messages from
SMS Center and for ’receiver’
number when receiving messages
from smsbox (either sendsms
message or reply to original
message). Format is that first
comes the unified prefix, then all
prefixes which are replaced by
the unified prefix, separated with
comma (’,’). For example, for
Finland an unified-prefix
"+358,00358,0;+,00" should do
the trick. If there are several
unified prefixes, separate their
rules with semicolon (’;’), like
"+35850,050;+35840,040". Note
that prefix routing is next to
useless now that there are SMSC
ID entries. To remove prefixes,
use like
"-,+35850,050;-,+35840,040".

alt-charset number

As some SMS Centers do not
follow the standards in character
coding, an alt-charset

character conversion is
presented. This directive acts
different for specific SMSC
types. Please see your SMSC
module type you want to use for
more details.

alt-dcs boolean

Optional data coding scheme
value usage. Sets the ’alt-dcs’
value for the sendsms HTTP
interface to a fixed value for each
SMS sent via this SMSC
connection. If equals to yes, uses
FX. If equals to no (default), uses
0X.

45

Chapter 7. Setting up a SMS Gateway

Variable Value Description

our-host hostname

Optional hostname or IP address
in which to bind the connection
in our end. TCP/IP connection
only.

log-file filename

A file in which to write a log of
the given smsc output. Hence
this allows to log smsc specific
entries to a separate file.

log-level number 0..5

Minimum level of log-file events
logged. 0 is for ’debug’, 1 ’info’,
2 ’warning, 3 ’error’ and 4
’panic’ (see Command Line
Options)

reconnect-delay number

Number of seconds to wait
between single re-connection
attempts. Hence all SMSC
modules should use this value for
their re-connect behavior.
(Defaults to ’10’ seconds).

reroute boolean

If set for a smsc group, all
inbound messages coming from
this smsc connection are passed
internally to the outbound
routing functions. Hence this
messages is not delivered to any
connected box for processing. It
is passed to the bearerbox routing
as if it would have originated
from an externally connected
smsbox. (Defaults to ’no’).

reroute-smsc-id string

Similar to ’reroute’. Defines the
explicit smsc-id the MO message
should be passed to for MT
traffic. Hence all messages
coming from the the
configuration group smsc are
passed to the outbound queue of
the specified smsc-id. This
allows direct proxying of
messages between 2 smsc
connections without injecting
them to the general routing
procedure in bearerbox.

46

Chapter 7. Setting up a SMS Gateway

Variable Value Description

reroute-receiver string

Similar to ’reroute’. Defines the
explicit smsc-id routes for
specific receiver numbers of
messages that are coming from
this smsc connection. Format is
that first comes the smsc-id to
route the message to, then all
receiver numbers that should be
routed, separated with comma
(’,’). For example, route receivers
111 and 222 to smsc-id A and
333 and 444 to smsc-id B would
look like: "A,111,222;
B,333,444".

reroute-receiver-regex string

Similar to ’reroute-receiver’.
Defines the explicit smsc-id
routes for specific receiver
number regex patterns of
messages that are coming from
this smsc connection. Format is
that first comes the smsc-id to
route the message to, then all
receiver numbers as regular
expressions that should be
routed, separated with comma
(’,’). For example, route receivers
that start with 1 and 2 to smsc-id
A and those that start with 3 and
4 to smsc-id B would look like:
"A,^1.*,^2.*; B,^3.*,^4.*".
(Please ensure the reserved
characters ’;’ and ’,’ are not used
in the regular expression to avoid
parsing errors).

reroute-dlr boolean

Indicate whether DLR’s should
be re-routed too, if one of above
reroute rules are enabled. Please
note, that SMSC-Module should
support DLR sending. At time of
writing none of SMSC-Module
supports DLR sending.

allowed-smsc-id-regex POSIX regular expression

SMS messages with SMSC ID
equal to any of the IDs in this set
of SMSC IDs are always routed
to this SMSC. See section on
Regular Expressions for details.

47

Chapter 7. Setting up a SMS Gateway

Variable Value Description

denied-smsc-id-regex POSIX regular expression

SMS messages with SMSC ID
equal to any of the IDs in this set
of SMSC IDs are never routed to
this SMSC. See section on
Regular Expressions for details.

preferred-smsc-id-regex POSIX regular expression

SMS messages with SMSC ID
in this set of SMSC IDs are sent
to this SMSC as preferred. See
section on Regular Expressions
for details.

allowed-prefix-regex POSIX regular expression

A set of phone number prefixes
which are accepted to be sent
through this SMSC. See section
on Regular Expressions for
details.

denied-prefix-regex POSIX regular expression

A set of phone number prefixes
which may not be sent through
this SMSC. See section on
Regular Expressions for details.

preferred-prefix-regex POSIX regular expression

As denied-prefix-regex,
but SMS messages with receiver
matching any of these prefixes
are preferably sent through this
SMSC. In a case of multiple
preferences, one is selected at
random. See section on Regular
Expressions for details.

max-sms-octets number

Maximum allowed octets for
this SMSC. If this maximum
exceeds Kannel will split SMS
into multiparts. Default: 140

dead-start boolean

Optional, defines if the SMSC
connection type is started in
disconnected mode (dead). This
allows SMSC to be connected at
a later time with the add-smsc
HTTP administration command.
If set to ’true’ the connection will
start as ’dead’ and will require a
start-smsc command to activate
it. Defaults to ’false’ if not
present.

48

Chapter 7. Setting up a SMS Gateway

Variable Value Description

instances number

The number of same instances
of this group to be created. This
allows to declare the config
group one time in the
configuration and to multiply it
by this value for the numner of
runtime instances. (default: 1)

In addition to these common variables there are several variables used by certain SMS center
connections. Each currently supported SMS center type is explained below, with configuration group for
each. Note that many of them use variables with same name, but most also have some specific variables.

NOTE: SMS center configuration variables are a bit incomplete, and will be updated as soon as people
responsible for the protocols are contacted. Meanwhile, please have patience.

Nokia CIMD 1.37 and 2.0
Support for CIMD 1.37 is quite old and will be removed in a future version of Kannel. Please let us know
if you still need it.

group = smsc
smsc = cimd
host = 100.101.102.103
port = 600
smsc-username = foo
smsc-password = bar

The driver for CIMD2 is a "receiving SME" and expects the SMSC to be configured for that. It also
expects the SMSC to automatically send stored messages as soon as Kannel logs in (this is the normal
configuration).

group = smsc
smsc = cimd2
host = 100.101.102.103
port = 600
smsc-username = foo
smsc-password = bar
keepalive = 5
my-number = "12345"

Variable Value Description

host (m) hostname

Machine that runs the SMSC.
As IP (100.100.100.100) or
hostname (their.machine.here)

port (m) port-number

Port number in the smsc host
machine

smsc-username (m) string

Username in the SMSC
machine/connection account

49

Chapter 7. Setting up a SMS Gateway

Variable Value Description

smsc-password (m) string

Password in the SMSC machine
needed to contact SMSC

keepalive number

SMSC connection will not be
left idle for longer than this many
seconds. The right value to use
depends on how eager the SMSC
is to close idle connections. If
you see many unexplained
reconnects, try lowering this
value. Set it to 0 to disable this
feature.

no-dlr boolean

Optional. If defined, status
delivery report requests (DLR)
won’t be requested at all. Some
CIMD2 SMSC have prohibited
these reports so if you are getting
error like "Incorrect status report
request parameter usage", this
option is for you. Defaults to
"false".

my-number string

The number that the SMSC will
add in front of the sender number
of all messages sent from
Kannel. If Kannel is asked to
send a message, it will remove
this prefix from the sender
number so that the SMSC will
add it again. If the prefix was not
present, Kannel will log a
warning and will not send the
sender number. If my-number is
not set, or is set to "never",
then Kannel will not send the
sender number to the SMSC at
all. If you want Kannel to pass
all sender numbers to the SMSC
unchanged, then just set
sender-prefix to the empty
string "".

our-port port-number

Optional port number in which
to bind the connection in our
end.

50

Chapter 7. Setting up a SMS Gateway

CMG UCP/EMI 4.0 and 3.5

Warning
See Appendix A for changes.

Kannel supports two types of connections with CMG SMS centers: direct TCP/IP connections (emi)
and ISDN/modem (X.25) connection (emi_x25).

Note: emi_x25 is an old implementation and supports less features than it’s IP counterpart. If you
still need this module, please tell us to devel@kannel.org so we can fix it.

Sample configurations for these are:

group = smsc
smsc = emi
host = 103.102.101.100
port = 6000
smsc-username = foo
smsc-password = bar
keepalive = 55
our-port = 600 (optional bind in our end)
receive-port = 700 (the port in which the SMSC will contact)
idle-timeout = 30

group = smsc
smsc = emi_x25
phone = ...
device = /dev/tty0
smsc-username = foo
smsc-password = bar

Variable Value Description

host (c) hostname

Machine that runs SMSC. As IP
(100.100.100.100) or hostname
(their.machine.here)

port (c) port-number

Port number in the SMSC host
machine

alt-host hostname

Optional alternate Machine that
runs SMSC. As IP
(100.100.100.100) or hostname
(their.machine.here) (If undef but
exists alt-port, emi2 would try
host:alt-port)

51

Chapter 7. Setting up a SMS Gateway

Variable Value Description

alt-port port-number

Optional alternate Port number
in the SMSC host machine (If
undef but exists alt-host, emi2
would try alt-host:port)

smsc-username string

Username in the SMSC
machine/connection account

smsc-password string

Password in the SMSC machine
needed to contact SMSC

device (c) device-name

The device the modem is
connected to, like /dev/ttyS0.
ISDN connection only.

phone (c) string

Phone number to dial to, when
connecting over a modem to an
SMS center.

our-port port-number

Optional port number in which
to bind the connection in our
end. TCP/IP connection only.

our-receiver-port port-number

Optional port number allowing
to specify our port when
connecting an SMSC. TCP/IP
connection only.

receive-port port-number

Optional port number we listen
to and to which the SMS center
connects when it has messages to
send. Required if SMS center
needs one connection to send and
other to receive. TCP/IP
connection only.

appname string

Name of a "Send only" service.
Defaults to send. All outgoing
messages are routed through this
service.

connect-allow-ip IP-list

If set, only connections from
these IP addresses are accepted
to receive-port. TCP/IP
connection only.

52

Chapter 7. Setting up a SMS Gateway

Variable Value Description

idle-timeout number (seconds)

If this option is set to a value
larger than 0, then the connection
will be closed after the
configured amount of seconds
without activity. This option
interacts with the keepalive
configuration option. If
keepalive is smaller than
idle-timeout, then the
connection will never be idle and
those this option has no effect. If
keepalive is larger than
idle-timeout, than
keepalive reopens the
connection. This allows one to
poll for pending mobile
originated Short Messages at the
SMSC.

keepalive number (seconds)

A keepalive command will be
sent to the SMSC connection this
many seconds after the last
message. The right value to use
depends on how eager the SMSC
is to close idle connections. 50
seconds is a good guess. If you
see many unexplained
reconnects, try lowering this
value. Set it to 0 to disable this
feature. Requires username or
my-number to be set.

wait-ack number (seconds)

A message is resent if the
acknowledge from SMSC takes
more than this time. Defaults to
60 seconds.

wait-ack-expire number

Defines what kind of action
should be taken if the the ack of
a message expires. The options
for this value are: 0x00 -
disconnect/reconnect, (default)
0x01 - as is now, re-queue, but
this could potentially result in the
msg arriving twice 0x02 - just
carry on waiting (given that the
wait-ack should never expire this
is the must accurate)

53

Chapter 7. Setting up a SMS Gateway

Variable Value Description

flow-control number

This SMSC can support two
types of flow control. The first
type of flow control is a
stop-and-wait protocol, when
this parameter equals to ’1’.
During the handling of
commands, no other commands
shall be sent before the a
response is received. Any
command that is sent before the
reception of the response will be
discarded. The second type of
flow control is windowing,
when this parameter is unset or
equals ’0’. In this case a
maximum of n commands can be
sent before a response is
received.

window number (messages)

When using flow-control=0,
emi works in windowed flow
control mode. This variable
defines the size of the window
used to send messages. (optional,
defaults to the maximum - 100)

my-number number

If the large account number is
different from the short number,
assign it with this variable. For
example, if short number is
12345 and large account is
0100100100101234 (IP+port),
set my-number to 12345 and
every message received will have
that receiver. In addition, if you
are bound to the SMSC without
an explicit login, use this
configuration directive to enable
keep-alive (OP/31) operations.

alt-charset number

Defines which character
conversion kludge may be used
for this specific link. Currently
implemented alternative charsets
are defined in "alt_charsets.h"
and new ones can be added.

notification-pid 4 num char.

Notification PID value. See
below for a complete list and
other notes. Example: 0539 a

54

Chapter 7. Setting up a SMS Gateway

Variable Value Description

notification-addr string (max 16)

Notification Address. Example:
0100110120131234. b

Notes:
a. If you set notification-pid, you should also set notification-addr.
b. If you set notification-addr, you should also set notification-pid.

You should use notification-pid and notification-addr if you need to inform your exact
"address" to your smsc. For example, if you have a Multiple-Address (MA) account with several
connections to the same short number, you may need to tell your smsc to send delivery reports to the
exact instance that sent the message. This is required because if you send a message with instance 1,
your instance 2 wouldn’t know about it, unless you use a shared DB store for delivery reports.

Notification PID Value Description
0100 Mobile Station
0122 Fax Group 3
0131 X.400
0138 Menu over PSTN
0139 PC appl. over PSTN (E.164)
0339 PC appl. over X.25 (X.121)
0439 PC appl. over ISDN (E.164)
0539 PC appl. over TCP/IP

SMPP 3.3, 3.4 and 5.0
This implements Short Message Peer to Peer (SMPP) Protocol 5.0, with most used support for 3.4 and
full support for 3.3. Sample configuration:

group = smsc
smsc = smpp
host = 123.123.123.123
port = 600
smsc-username = "STT"
smsc-password = foo
system-type = "VMA"
address-range = ""

Variable Value Description

host (m) hostname

Machine that runs SMSC. As IP
(100.100.100.100) or hostname
(their.machine.here)

port (m) port-number

The port number for the
TRANSMITTER connection to
the SMSC. If set, receive-port
must be ommited or set to 0.

55

Chapter 7. Setting up a SMS Gateway

Variable Value Description

use-ssl bool

Defines whether we should try
to bind with SSL enabled
connection to create a SSMPP
(secure SMPP) session.

ssl-client-certkey-file

(c)

filename

A PEM encoded SSL certificate
and private key file to be used for
SSL connections. This option is
used together with use-ssl for
client certificate validation with
SMPP SMSCs requiring it.

transceiver-mode bool

Use a TRANSCEIVER mode
connection to the SMSC. It uses
the standard transmit ’port’ to
define the port to connect to.
This is a SMPP 3.4 and 5.0
feature and will not work on an
earlier SMSC using SMPP 3.3.
This will do a bind_transceiver
only and will not attempt to fall
back to doing transmit and
receive on the same connection.

receive-port port-number

The port number for the
RECEIVER connection to the
SMSC. If set, port must be
ommited or set to 0.

smsc-username (m) string

The ’username’ of the
Messaging Entity connecting to
the SMSC. If the SMSC operator
reports that the "TELEPATH
SYSTEM MANAGER
TERMINAL" view
"Control.Apps.View" value
"Name:" is
"SMPP_ZAPVMA_T" for the
transmitter and
"SMPP_ZAPVMA_R" for the
receiver the smsc-username value
is accordingly "SMPP_ZAP".
Note that this used to be called
system-id (the name in SMPP
documentation) and has been
changed to smsc-username to
make all Kannel SMS center
drivers use the same name.

56

Chapter 7. Setting up a SMS Gateway

Variable Value Description

smsc-password (m) string

The password matching the
"smsc-username" your
teleoperator provided you with.

system-type (m) string

Optional; used to categorize the
type of ESME that is binding to
the SMSC. Examples include
"VMS" (voice mail system) and
"OTA" (over-the-air activation
system). If not set, defaults to
"VMA" (voice mail alerting).

service-type string

Optional; if specified, sets the
service type for the SMSC. If
unset, the default service type is
used. This may be used to
influence SMS routing (for
example). The SMSC operator
may also refer to this as the
"profile ID". The maximum
length of the service type is 6,
according to the SMPP
specification v3.4. Defined
values are: "CMT" (cellular
messaging), "CPT" (cellular
paging), "VMN" (voice mail
notification), "VMA" (voice mail
alerting), "WAP" (wireless
application protocol), "USSD"
(unstructured supplementary
services data), "CBS" (cell
broadcast service) and "GUTS"
(generic UDP transport service).
Other values may be defined
mutually between the SMSC and
the ESME application.

interface-version number

Change the "interface version"
parameter sent from Kannel to a
value other then 0x34 (for SMPP
v3.4). The value entered here
should be the hexadecimal
representation of the interface
version parameter. For example,
the default (if not set) is "34"
which stands for 0x34. For
SMPP v3.3 set to "33". For
SMPP v5.0 set to "50".

57

Chapter 7. Setting up a SMS Gateway

Variable Value Description

address-range (m) string

According to the SMPP 3.4 spec
this is supposed to affect which
MS’s can send messages to this
account. Doesn’t seem to work,
though.

my-number number

Optional smsc short number.
Should be set if smsc sends a
different one.

enquire-link-interval number

Optional the time lapse allowed
between operations after which
an SMPP entity should
interrogate whether it’s peer still
has an active session. The default
is 30 seconds.

max-pending-submits number

Optional the maximum number
of outstanding (i.e.
acknowledged) SMPP operations
between an ESME and SMSC.
This number is not specified
explicitly in the SMPP Protocol
Specification and will be
governed by the SMPP
implementation on the SMSC.
As a guideline it is recommended
that no more than 10 (default)
SMPP messages are outstanding
at any time.

reconnect-delay number

Optional the time between
attempts to connect an ESME to
an SMSC having failed to
connect initiating or during an
SMPP session. The default is 10
seconds.

source-addr-ton number

Optional, source address TON
setting for the link. (Defaults to
2).

source-addr-npi number

Optional, source address NPI
setting for the link. (Defaults to
1).

58

Chapter 7. Setting up a SMS Gateway

Variable Value Description

source-addr-autodetect boolean

Optional, if defined tries to scan
the source address and set TON
and NPI settings accordingly. If
you don’t want to autodetect the
source address, turn this off, by
setting it to no. (Defaults to yes).

dest-addr-ton number

Optional, destination address
TON setting for the link.
(Defaults to 2).

dest-addr-npi number

Optional, destination address
NPI setting for the link. (Defaults
to 1).

bind-addr-ton number

Optional, bind address TON
setting for the link. (Defaults to
0).

bind-addr-npi number

Optional, bind address NPI
setting for the link. (Defaults to
0).

59

Chapter 7. Setting up a SMS Gateway

Variable Value Description

msg-id-type number

Optional, specifies which
number base the SMSC is using
for the message ID numbers in
the corresponding
submit_sm_resp and
deliver_sm PDUs. This is
required to make delivery reports
(DLR) work on SMSC that
behave differently. The number
is a combined set of bit 1 and bit
2 that indicate as follows: bit 1:
type for submit_sm_resp, bit
2: type for deliver_sm. If the
bit is set then the value is in hex
otherwise in decimal number
base. Which means the following
combinations are possible and
valid: 0x00 deliver_sm

decimal, submit_sm_resp
decimal; 0x01 deliver_sm

decimal, submit_sm_resp hex;
0x02 deliver_sm hex,
submit_sm_resp decimal;
0x03 deliver_sm hex,
submit_sm_resp hex. In
accordance to the SMPP v3.4
specs the default will be a C
string literal if no of the above
values is explicitly indicated
using the config directive.

alt-charset string

Defines which character
encoding is used for this specific
smsc link. Uses iconv()
routines to convert from and to
that specific character set
encoding. See your local
iconv_open(3) manual page for
the supported character
encodings and the type strings
that should be presented for this
directive.

60

Chapter 7. Setting up a SMS Gateway

Variable Value Description

alt-addr-charset string

Defines which character
encoding is used for
alphanumeric addresses. When
set to GSM, addresses are
converted into the GSM 03.38
charset (Since @ is translated
into 0x00 which will break the
SMPP PDU, @ replaced with ?).
If set to another value, iconv()
is used. (Defaults to
windows-1252)

retry boolean

Defines if SMSC should retry to
connect even if SMSC sent error
that username or password is
incorrect. (Defaults to false)

connection-timeout number (seconds)

This timer specifies the
maximum time lapse allowed
between transactions , after
which period of inactivity, an
SMPP driver may assume that
the session is no longer active
and does reconnect. Defaults to
300 seconds, to disable set it to 0.

wait-ack number (seconds)

A message is resent if the
acknowledge from SMSC takes
more than this time. Defaults to
60 seconds.

wait-ack-expire number

Defines what kind of action
should be taken if the ack of a
message expires. The options for
this value are: 0x00 -
disconnect/reconnect, (default)
0x01 - as is now, re-queue, but
this could potentially result in the
msg arriving twice 0x02 - just
carry on waiting (given that the
wait-ack should never expire this
is the must accurate)

validityperiod integer

How long the message will be
valid, i.e., how long the SMSC
will try try to send the message
to the recipient. Defined in
minutes.

61

Chapter 7. Setting up a SMS Gateway

Variable Value Description

esm-class number

Change the "esm_class"
parameter sent from Kannel.
Accepted values are 0 (Default
SMSC Mode) and 3 (Store and
Forward). Defaults to 3.

log-format number

Selects which SMPP PDU dump
format to use: 1 - for multiline
(default) 2 - for one line

Sema Group SMS2000 OIS 4.0, 5.0 and 5.8
The 4.0 implementation is over Radio PAD (X.28). Following configuration variables are needed, and if
you find out the more exact meaning, please send a report.

The 5.0 implementation uses X.25 access gateway.

The 5.8 implementation uses direct TCP/IP access interface.

group = smsc
smsc = sema
device = /dev/tty0
smsc_nua = (X121 smsc address)
home_nua = (x121 radio pad address)
wait_report = 0/1 (0 means false, 1 means true)

Variable Value Description
device (m) device ex: /dev/tty0

smsc_nua (m) X121 smsc address

The address of an SMSC for
SEMA SMS2000 protocols using
an X.28 connection.

home_nua (m) X121 radio pad address

The address of a radio PAD
implementing Sema SMS2000
using X.28 connection.

wait_report 0 (false)/1 (true)

Report indicator used by the
Sema SMS2000 protocol.
Optional.

group = smsc
smsc = ois
host = 103.102.101.100
port = 10000
receive-port = 10000
ois-debug-level = 0

Variable Value Description
host (m) ip SMSC Host name or IP

62

Chapter 7. Setting up a SMS Gateway

Variable Value Description
port (m) port number SMSC Port number

receive-port (m) port number

The port in which the SMSC
will contact

ois-debug-level number 0 to 8

extra debug, optional, see
smsc_ois.c

group = smsc
smsc = oisd
host = 103.102.101.100
port = 10000
keepalive = 25
my-number = 12345
validityperiod = 30

Variable Value Description
host (m) ip SMSC Host name or IP
port (m) port number SMSC Port number

keepalive number

SMSC connection will not be
left idle for longer than this many
seconds. The right value to use
depends on how eager the SMSC
is to close idle connections. If
you see many unexplained
reconnects, try lowering this
value. Set it to 0 to disable this
feature.

my-number string

Any valid SME number
acceptable by SMSC. This
number is used only in keepalive
request.

validityperiod integer

How long the message will be
valid, i.e., how long the SMS
center (the real one, not the
phone acting as one for Kannel)
will try to send the message to
the recipient. Defined in minutes.

SM/ASI (for CriticalPath InVoke SMS Center 4.x)
This implements Short Message/Advanced Service Interface (SM/ASI) Protocol for the use of
connecting to a CriticalPath InVoke SMS Center. Sample configuration:

group = smsc
smsc = smasi

63

Chapter 7. Setting up a SMS Gateway

host = 10.11.12.13
port = 23456
smsc-username = foo
smsc-password = foo

Variable Value Description

host (m) hostname

Machine that runs SMSC. As IP
(10.11.12.13) or hostname
(host.foobar.com)

port (m) port-number

The port number for the
connection to the SMSC.

smsc-username (m) string

The ’username’ of the
Messaging Entity connecting to
the SMSC.

smsc-password (m) string

The password matching the
"smsc-username" your
teleoperator provided you with.

reconnect-delay number

Optional, the time between
attempts to connect to an SMSC
having failed to connect
initiating or during an session.
The default is 10 seconds.

source-addr-ton number

Optional, source address TON
setting for the link. (Defaults to
1).

source-addr-npi number

Optional, source address NPI
setting for the link. (Defaults to
1).

dest-addr-ton number

Optional, destination address
TON setting for the link.
(Defaults to 1).

dest-addr-npi number

Optional, destination address
NPI setting for the link. (Defaults
to 1).

priority number

Optional, sets the default
priority of messages transmitted
over this smsc link. (Defaults to
0, which is the lowest priority).

GSM modem

Warning
See Appendix A for changes.

64

Chapter 7. Setting up a SMS Gateway

This driver allows a GSM Modem or Phone to be connected to Kannel and work as a virtual SMSC

group = smsc
smsc = at
modemtype = auto
device = /dev/ttyS0
speed = 9600
pin = 2345

Variable Value Description

modemtype string

Modems from different
manufacturers have slightly
different behavior. We need to
know what type of modem is
used. Use "auto" or omit
parameter to have Kannel detect
the modem type automatically.
(some types should not be
auto-detected like the Nokia
Premicell).

device (m) device-name

The device the modem is
connected to, like /dev/ttyS0.
When the device name is set to
rawtcp or telnet two other
variables are required in the
configuration: host and port.
See the note below.

speed serial speed in bps

The speed in bits per second.
Default value 0 means to try to
use speed from modem
definition, or if it fails, try to
autodetect.

pin string

This is the PIN number of the
SIM card in the GSM modem.
You can specify this option if
your SIM has never been used
before and needs to have the PIN
number entered. The PIN is
usually a four digit number.

65

Chapter 7. Setting up a SMS Gateway

Variable Value Description

validityperiod integer

How long the message will be
valid, i.e., how long the SMS
center (the real one, not the
phone acting as one for Kannel)
will try to send the message to
the recipient. Encoded as per the
GSM 03.40 standard, section
9.2.3.12. Default is 167, meaning
24 hours.

keepalive seconds

Kannel would "ping" the modem
for this many seconds. If the
probe fails, try to reconnect to it.

my-number number Optional phone number.
sms-center number SMS Center to send messages.

sim-buffering boolean

Whether to enable the so-called
"SIM buffering behavior" of the
GSM module. if assigned a true
value, the module will query the
message storage memory of the
modem and will process and
delete any messages found there.
this does not alter normal
behavior, but only add the
capability of reading messages
that were stored in the memory
for some reason. The type of
memory to use can be selected
using the ’message-storage’
parameter of the modem
configuration. Polling the
memory is done at the same
interval as keepalive (if set) or 60
seconds (if not set). NOTE: This
behavior is known to cause
minor or major hiccups for a few
buggy modems. Modems known
to work with this setting are
Wavecom WM02/M1200 and the
Siemens M20.

66

Chapter 7. Setting up a SMS Gateway

Variable Value Description

max-error-count integer

Maximal error count for opening
modem device or initializing of
the modem before
reset-string will be
executed. This is useful when
modem crashed and needs hard
reset. Default disabled.

host IP address

Hostname or IP address to
connect in rawtcp mode.
Required if device is set to
rawtcp.

port integer

TCP port to connect to on
rawtcp-host. Required if
device is set to rawtcp.

smsc-username string

Username to use on a Login: or
User: prompt prior to be
connected to the modem. Useful
if modem is connected to a
terminal server and rawtcp

mode or telnet mode are used.

smsc-password string

Username to use on a Password
prompt prior to be connected to
the modem. Useful if modem is
connected to a terminal server
and rawtcp mode or telnet
mode are used. smsc-password
can be used alone without
smsc-username for devices
only asking for a password.

login-prompt string

An alternative string to be used
instead of Login: or Username:

password-prompt string

An alternative string to be used
instead of Password:

Modem definitions are now multiple groups present in kannel.conf, either directly or, for example, by
including the example modems.conf. (See Inclusion of configuration files)

Variable Value Description
group modems This is a mandatory variable

id string

This is the the id that should be
used in modemtype variable
from AT2

name string

The name of this modem
configuration. Used in logs

67

Chapter 7. Setting up a SMS Gateway

Variable Value Description

detect-string string

String to use when trying to
detect the modem. See
detect-string2

detect-string2 string

Second string to use to detect the
modem. For example, if the
modem replies with "SIEMENS
MODEM M20",
detect-string could be
"SIEMENS" and
detect-string2 "M20"

init-string string

Optional initialization string.
Defaults to
"AT+CNMI=1,2,0,1,0"

speed number

Serial port hint speed to use.
Optional. Defaults to smsc group
speed or autodetect

enable-hwhs string

Optional AT command to enable
hardware handshake. Defaults to
"AT+IFC=2,2"

hardware-flow-control boolean

Optionally disable hardware
handshake on the computer side
by setting it to false. Defaults to
true.

need-sleep boolean

Optional. Defaults to false.
Some modems needs to sleep
after opening the serial port and
before first command

no-pin boolean

Optional. Defaults to false. If the
modem doesn’t support the PIN
command, enable this

no-smsc boolean

Optional. Defaults to false. If the
modem doesn’t support setting
the SMSC directly on the PDU,
enable this. (Default is to include
a "00" at the beginning of the
PDU to say it’s the default smsc,
and remove the "00" when
receiving)

sendline-sleep number (milliseconds)

Optional, defaults to 100
milliseconds. The sleep time
after sending a AT command.

68

Chapter 7. Setting up a SMS Gateway

Variable Value Description

keepalive-cmd string

Optional, defaults to "AT". If
keepalive is activated in AT2
group, this is the command to be
sent. If your modem supports it,
for example, use
"AT+CBC;+CSQ", and see in
logs the reply "+CBC: 0,64"
(0=On battery, 64% full) and
"+CSQ: 14,99" (0-31, 0-7: signal
strength and channel bit error
rate; 99 for unknown). See 3GPP
27007.

message-storage string

Message storage memory type
to enable for "SIM buffering".
Possible values are: "SM" - SIM
card memory or "ME" - Mobile
equipment memory (may not be
supported by your modem).
check your modem’s manual for
more types. By default, if the
option is not set, no message
storage command will be sent to
the modem and the modem’s
default message storage will be
used (usually "SM").

message-start string

Optional integer, defaults to 1.
Specifies starting index in SIM
buffer for new SMS. Most
modems start numbering from 1,
however a few like the UMG181
start numbering from 0. This
parameter ensures that all SMS
are fetched when using "SIM
buffering".

enable-mms boolean

Optional, defaults to false. If
enabled, Kannel would send an
AT+CMMS=2 if it have more
than one message on queue and
hopefully will be quicker sending
the messages.

reset-string string

Which reset string to execute
when max-error-count

reached. Example for Falcom:
AT+CFUN=1

A note about delivery reports and GSM modems: while it is possible (and supported) to receive delivery

69

Chapter 7. Setting up a SMS Gateway

reports on GSM modems, it may not work for you. if you encounter problems, check that your modem’s
init string (if not the default) is set to correctly allow the modem to send delivery reports using
unsolicited notification (check your modem’s manual). If the init-string is not set as si, some modems
will store delivery reports to SIM memory, to get at which you will need to enable sim-buffering. finally
your GSM network provider may not support delivery reports to mobile units.

About rawtcp mode: This mode allows you to use a GSM modem connected to a remote terminal
server, such as Perle IOLAN DS1 or a Cisco router with reverse telnet. The teminal server should
support raw TCP mode. The driver is not tested in telnet mode. It is recommended to use keepalive
variable, in order to automatically reconnect in case of network connectivity problems.

Modem initialization

This question has been asked frequently in the users mailing list. It usually comes in two forms:

1. Modem doesn’t receive or transmit SMS.

In its current implementation, the at driver will panic if it cannot find the modem device and
bearerbox won’t start. This can happen either because the wrong modem device is configured or the
device has no write access for kannel’s user.

In the first case use system logs to discover where is your modem assigned to:

grep tty /var/log/messages

Then verify that this is indeed your GSM modem device by connecting to it with minicom or wvdial
and issuing a few AT commands. Wvdial is preferrable, since it can also give you a working
init-string

In the second case you need to give write access to kannel user. This is no problem if you run kannel
as root, but it is not recommended to do so. In Ubuntu linux you just need to assign kannel user to
group "dial". In other systems you can either:

chmod 666 /dev/modem

or preferably:

chmod 664 /dev/modem
chgrp group /dev/modem
usermod -G group kannel-user

2. Modem doesn’t receive DLRs or SMS.

By default the modem doesn’t know how to treat incoming messages. To tell it to send it to kannel
you have to configure init-string with the +CNMI=x,x,x,x,x command. X’s are decimal
numbers and CNMI stands for Command New Message Indication. There is no hard rule about its
values. They are model and manufacturer specific. Best to consult modem manual or manufacturer’s
web site. Failing that, wvdialconf might give a working CNMI. Finally see modems.conf for
examples and try out different values. Some Nokia phones do not support this command, but are
ready to transmit incoming messages from the start.

Since this setting is modem specific, kannel cannot understand what it means from its value, and if
using unconventional values you should tell kannel through sim-buffering and

70

Chapter 7. Setting up a SMS Gateway

message-storage. In any case it is useful to add +CMEE = 1 or 2 in the init-string in order
to make the modem more verbose in its responses.

group = modems
init-string = "AT+CNMI=2,3,0,1,0;+CMEE=1"
message-storage = ME or SM Depending on your modem, you may need to adjust it
...

group = smsc
smsc = at
sim-buffering = true This will tell kannel to search for messages in
... the modem (either memory or its SIM)

GSMA OneAPI v1.0 ParlayX SMS SOAP
This implements the GSMA OneAPI v1.0 ParlayX SMS SOAP/XML interface in two flavors, the
Ericsson SDP (service delivery platform) ParlayX and the GSMA OneAPI v1.0 SOAP interfaces.

Example configuration for the Ericsson SDP variant:

group = smsc
smsc = parlayx
system-type = ericsson-sdp
port = 10000
connect-allow-ip = 10.11.12.13
send-url = http://host/location
dlr-url = http://our-host:10000/dlr-location
smsc-username = tester
smsc-password = foobar

Variable Value Description

system-type (m) string

Type of ParlayX connection.
Currently supported are:
’oneapi-v1’, ’ericsson-sdp’. The
variants have the same ParlayX
SOAP XML PDUs, but differ in
the authentication scheme they
use, where ’ericsson-sdp’ uses
WS-Security via wsse and
’oneapi-v1’ uses plain HTTP
basic authentication.

port (m) port-number

Port number in which Kannel
listens to (MO and DLR)
messages from other SOAP
service side.

71

Chapter 7. Setting up a SMS Gateway

Variable Value Description

send-url (m) url

Location of the SOAP service to
send MT messages.

dlr-url (m) url

Location of our side SOAP
service for DLR notifications.

smsc-username (m) string

Username associated for the
SOAP service connection.

smsc-password (m) string

Password associated for the
SOAP service username.

use-ssl boolean

Defines whether listen port
should use SSL.

connect-allow-ip IP-list

IPs allowed to use this SOAP
service interface. If not set,
"127.0.0.1" (localhost) is the
only host allowed to connect.
Typically you will allow the IP of
the other side SOAP service
here.

window integer

Number of concurrent sending
threads. If not set, one thread is
used.

Fake SMSC
Fake SMSC is a simple protocol to test out Kannel. It is not a real SMS center, and cannot be used to
send or receive SMS messages from real phones. So, it is ONLY used for testing purposes.

group = smsc
smsc = fake
port = 10000
connect-allow-ip = 127.0.0.1

Variable Value Description

host (m) hostname

Machine that runs the SMSC.
As IP (100.100.100.100) or
hostname (their.machine.here)

port (m) port-number

Port number in smsc host
machine

connect-allow-ip IP-list

If set, only connections from
these IP addresses are accepted.

72

Chapter 7. Setting up a SMS Gateway

HTTP-based relay and content gateways
This special "SMSC" is used for HTTP based connections with other gateways and various other relay
services, when direct SMSC is not available.

group = smsc
smsc = http
system-type = kannel
smsc-username = nork
smsc-password = z0rK
port = 13015
send-url = "http://localhost:20022"

Variable Value Description

system-type (m) string

Type of HTTP connection.
Currently supported are:
’kannel’, ’brunet’, ’xidris’,
’clickatell’ and ’generic’.

send-url (m) url

Location to send MT messages.
This URL is expanded by used
system, if need to.

no-sender boolean

Do not add variable sender to
the send-url.

no-coding boolean

Do not add variable coding to
the send-url.

no-sep boolean

Represent udh and text as a
numeric string containing the
hex-dump. For instance,
text=%2b123 is represented as
text=2b313233.

port (m) port-number

Port number in which Kannel
listens to (MO) messages from
other gateway

use-ssl boolean

Defines whether listen port
should use SSL.

connect-allow-ip IP-list

IPs allowed to use this interface.
If not set, "127.0.0.1" (localhost)
is the only host allowed to
connect.

smsc-username string

Username associated to
connection, if needed. Kannel
requires this, and it is the same as
send-sms username at other end.

smsc-password string

Password for username, if
needed.

73

Chapter 7. Setting up a SMS Gateway

Variable Value Description

max-pending-submits number

Optional the maximum number
of outstanding (i.e.
acknowledged) requests. As a
guideline it is recommended that
no more than 10 (default)
requests are outstanding at any
time.

system-id string Clickatell only: API id.

mobile-originated integer

Clickatell only: ’mo’ parameter
used for a two-way service (0 or
1).

use-post boolean

Generic only: Defines if a HTTP
POST method with a
content-type
application/x-www-form-urlencoded

should be used rather then the
HTTP GET method. If set, both
directions will use the HTTP
POST method. (Default: no)

The "generic" system-type

For a generic HTTP-based relay, the system-type ’generic’ can be used. It can use the escape codes
known from sms-service’s get-url config directives in the send-url string to indicate the HTTP API
calling style of the remote HTTP server, and the 3 HTTP body response parsing regular expressions
’status-success-regex’ for successfull acknowledge, ’status-permfail-regex’ for permanent failure and
’status-tempfail-regex’ for temporary failure. It can also accomodate the incoming parameters and
response codes and text. This system-type has a lot of extra parameters that gives it a lot of flexibility:

Variable Value Description

status-success-regex (o) POSIX regular expression

Regular expression to match
against HTTP response body
content, indicating a successful
submission.

status-permfail-regex

(o)

POSIX regular expression

Regular expression to match
against HTTP response body
content, indicating a permanent
failure.

status-tempfail-regex

(o)

POSIX regular expression

Regular expression to match
against HTTP response body
content, indicating a temporary
failure.

74

Chapter 7. Setting up a SMS Gateway

Variable Value Description

generic-foreign-id-regex

(o)

POSIX regular expression

Regular expression to match
against HTTP response body
content to get the foreign
message id in case of successful
submission.

generic-param-username

(o)

string

Overrides the default parameter
for the ’username’ field used on
incoming requests.

generic-param-password

(o)

string

Overrides the default parameter
for the ’password’ field used on
incoming requests.

generic-param-from (o) string

Overrides the default parameter
for the ’from’ field used on
incoming requests.

generic-param-to (o) string

Overrides the default parameter
for the ’to’ field used on
incoming requests.

generic-param-text (o) string

Overrides the default parameter
for the ’text’ field used on
incoming requests.

generic-param-udh (o) string

Overrides the default parameter
for the ’udh’ field used on
incoming requests.

generic-param-service

(o)

string

Overrides the default parameter
for the ’service’ field used on
incoming requests.

generic-param-account

(o)

string

Overrides the default parameter
for the ’account’ field used on
incoming requests.

generic-param-binfo (o) string

Overrides the default parameter
for the ’binfo’ field used on
incoming requests.

generic-param-dlr-mask

(o)

string

Overrides the default parameter
for the ’dlr-mask’ field used on
incoming requests.

generic-param-dlr-err

(o)

string

Overrides the default parameter
for the ’dlr-err’ field used on
incoming requests.

75

Chapter 7. Setting up a SMS Gateway

Variable Value Description

generic-param-dlr-url

(o)

string

Overrides the default parameter
for the ’dlr-url’ field used on
incoming requests.

generic-param-dlr-mid

(o)

string

Overrides the default parameter
for the ’dlr-mid’ field used on
incoming requests.

generic-param-flash (o) string

Overrides the default parameter
for the ’flash’ field used on
incoming requests.

generic-param-mclass (o) string

Overrides the default parameter
for the ’mclass’ field used on
incoming requests.

generic-param-mwi (o) string

Overrides the default parameter
for the ’mwi’ field used on
incoming requests.

generic-param-coding (o) string

Overrides the default parameter
for the ’coding’ field used on
incoming requests.

generic-param-validity

(o)

string

Overrides the default parameter
for the ’validity’ field used on
incoming requests.

generic-param-deferred

(o)

string

Overrides the default parameter
for the ’deferred’ field used on
incoming requests.

generic-param-foreign-id

(o)

string

Overrides the default parameter
for the ’foreign-id’ field used on
incoming requests.

generic-param-meta-data

(o)

string

Overrides the default parameter
for the ’meta-data’ field used on
incoming requests.

generic-message-sent (o) string

It allows you to set the text
returned when a succesful
request is made. If not set,
defaults to ’Sent.’. Note that you
can use all sms service escapes
here, see Parameters (Escape
Codes) for details.

76

Chapter 7. Setting up a SMS Gateway

Variable Value Description

generic-status-sent (o) string

Overrides the HTTP status code
returned when a successful
request is made. If not set,
defaults to 202
(HTTP_ACCEPTED).

generic-status-error (o) string

Overrides the HTTP status code
returned when a request is
rejected for any reason. If not set,
defaults to 202
(HTTP_ACCEPTED).

An example for a ’generic’ group looks like this:

group = smsc
smsc = http
system-type = generic
port = 13015
send-url = "http://www.foobar.com/mt.php?from=%P&to=%p&text=%b"
status-success-regex = "ok"
status-permfail-regex = "failure"
status-tempfail-regex = "retry later"
generic-foreign-id-regex = "<id>(.+)</id>"
generic-param-from = "phoneNumber"
generic-param-to = "shortCode"
generic-message-sent = "Message sent with ID: %I"
generic-status-sent = 200
generic-status-error = 404

Loopback SMSC (MT to MO direction switching)
This special "SMSC" type can be used to route MT messages in bearerbox internally as MO input
messages again. Therefore this tyoe is the MT wise counterpart of the ’reroute’ functionality of the smsc
group when MOs are re-routed as MTs.

group = smsc
smsc = loopback
smsc-id = loop1
reroute-smsc-id = my_id

Variable Value Description

reroute-smsc-id (o) string

Tag the rerouted MO with the
given value for smsc-id instead
of the canonical smsc-id value of
the smsc group itself.

77

Chapter 7. Setting up a SMS Gateway

Using multiple SMS centers
If you have several SMS center connections (multiple operators or a number of GSM modems) you need
to configure one smsc group per SMS center (or GSM modem). When doing this, you might want to use
routing systems to rout messages to specific centers - for example, you have 2 operator SMS centers, and
the other is much faster and cheaper to use.

To set up routing systems, first give an unique ID for each SMS center - or if you want to treat multiple
ones completely identical, give them identical ID. Then use preferred-smsc-id and
denied-smsc-id to set up the routing to your taste. See also SMS PUSH settings (’sendsms-user’
groups), below.

Feature checklist
Not all of Kannel’s SMSC drivers support the same set of features. This is because they were written at
different times, and new features are often only added to drivers that the feature author can test.

The table in this section is an attempt to show exactly what features to expect from a driver, and to help
identify areas where drivers need to be updated. Currently most of the entries are marked as "not tested"
because the table is still new.

Table 7-2. SMSC driver features

Fea-
ture

cimd
cimd2

emi
emi_x25smpp

sema ois oisd at http fake
smasi

Can use DLR

n y? y n y? n n y n n y y

Can set DCSa

? ? y ? ? ? ? y y ? ? ?

Can set Alt-DCS

n n y n n n n n y n n ?

Can set Validity

? ? y ? ? ? ? y y ? ? ?

Can set Deferred

? ? y ? ? ? ? n n ? ? ?

Can set PID

n y y n y n n n y n n ?

Can set RPI

n y y n y n n n n n n ?

Can send Unicode

? ? y ? ? ? ? y y ? ? ?

Can send 8 bits

? ? y ? ? ? ? y y ? ? y

78

Chapter 7. Setting up a SMS Gateway

Fea-
ture

cimd
cimd2

emi
emi_x25smpp

sema ois oisd at http fake
smasi

Correctly send GSM alphabet

? ? y ? ? ? ? y ? ? ? ?

Can set binfo / tariff class

? y ? ? ? ? ? n ? ? ? ?

Can use throttling

n n y n y n n n n y y y

Notes:
a. To use mclass, mwi, coding and compress fields.

Table 7-3. SMSC driver internal features

Fea-
ture

cimd
cimd2

emi2
emi_x25smpp

sema ois oisd at http fake
smasi

Can keep idle connections alive

n y? y n y? ? ? y y ? ? y

Can send octet data without UDH

n y? y y? n n y? y y n y?a ?

Can send octet data with UDH

N y? y y? y? n ? y y y? y?a ?

Can send text messages with UDH

n y? y y? n n ? y y n y? ?

Can receive octet data without UDH

n y? y n n y?b y? y y n n ?

Can receive Unicode messages

n n y n n n n y y n n ?

Can receive octet data with UDH

n y? y n n n N y y y? y? ?

Can receive text messages with UDH

n y? y n n n N y y n n ?

Correctly encodes @ when sending

y? y? y ? y? ? y? y y y? y? ?

Correctly encodes ä when sending

y? y? y ? y? ? y? y y y? y? ?

Correctly encodes { when sending

n y? y ? y? ? n y Nc y? y? ?

Can receive @ in text messages

y? y? y ? y? ? y? y y y? y? ?

79

Chapter 7. Setting up a SMS Gateway

Fea-
ture

cimd
cimd2

emi2
emi_x25smpp

sema ois oisd at http fake
smasi

Can receive ä in text messages

y? y? y ? y? ? y? y y? y? y? ?

Can receive { in text messages

n y? y ? y? ? n y y? y? y? ?

Can shut down idle connections

n n y n n ? ? n ? ? ? ?

Notes:
a. Does not mark it as octet data
b. However, it looks like the sema driver can’t receive text data.
c. Miscalculates message length

Symbol Meaning
? not yet investigated
y driver has this feature, and it has been tested
y? driver probably has this feature, has not been

tested
n driver does not have this feature
N driver claims to have this feature but it doesn’t

work
- feature is not applicable for this driver

External delivery report (DLR) storage
Delivery reports are supported by default internally, which means all DLRs are stored in the memory of
the bearerbox process. This is problematic if bearerbox crashes or you take the process down in a
controlled way, but there are still DLRs open. Therefore you may use external DLR storage places, i.e. a
MySQL database.

Following are the supported DLR storage types and how to use them:

Internal DLR storage
This is the default way in handling DLRs and does not require any special configuration. In order to
configure bearerbox to use internal DLR storage use dlr-storage = internal in the core group.

MySQL DLR storage
To store DLR information into a MySQL database you may use the dlr-storage = mysql

80

Chapter 7. Setting up a SMS Gateway

configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a mysql-connection group that defines the connection to the MySQL
server itself.

Here is the example configuration from doc/examples/dlr-mysql.conf:

group = mysql-connection
id = mydlr
host = localhost
username = foo
password = bar
database = dlr
max-connections = 1

group = dlr-db
id = mydlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

MySQL connection configuration

For several reasons external storage may be required to handle dynamical issues, i.e. DLRs, sms-service,
sendsms-user, ota-setting, ota-bookmark definitions and so on. To define a MySQL database connection
you simple need to specify a mysql-connection group as follows:

Table 7-4. MySQL Connection Group Variables

Variable Value Description
group mysql-connection This is a mandatory variable

id (m) string

An optional name or id to
identify this MySQL connection
for internal reference with other
MySQL related configuration
groups. Any string is acceptable,
but semicolon ’;’ may cause
problems, so avoid it and any
other special non-alphabet
characters.

81

Chapter 7. Setting up a SMS Gateway

Variable Value Description

host (m) hostname or IP

Hostname or IP of a server
running a MySQL database to
connect to.

username (m) username
User name for connecting to

MySQL database.

password (m) password
Password for connecting to

MySQL database.

database (m) string
Name of database in MySQL

database server to connect to.

max-connections integer

How many connections should
be opened to the given database.
This is used for database pool.

A sample ’mysql-connection’ group:

group = mysql-connection
id = dlr-db
host = localhost
username = foo
password = bar
database = dlr
max-connections = 1

In case you use different MySQL connections for several storage issues, i.e. one for DLR and another
different one for sms-service you may use the include configuration statement to extract the MySQL
related configuration groups to a separate mysql.conf file.

LibSDB DLR storage
To store DLR information into a LibSDB resource (which is an abstraction of a real database) you may
use the dlr-storage = sdb configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a sdb-connection group that defines the LibSDB resource itself.

Here is the example configuration from doc/examples/dlr-sdb.conf using a PostgreSQL resource:

group = sdb-connection
id = pgdlr
url = "postgres:host=localhost:db=myapp:port=1234"
max-connections = 1

group = dlr-db
id = pgdlr
table = dlr
field-smsc = smsc

82

Chapter 7. Setting up a SMS Gateway

field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

Beware that you have the DB support build in your LibSDB installation when trying to use a specific DB
type within the URL.

Oracle 8i/9i DLR storage
To store DLR information into a Oracle database you may use the dlr-storage = oracle

configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a oracle-connection group that defines the connection to the Oracle
server itself.

Here is the example configuration from doc/examples/dlr-oracle.conf:

group = oracle-connection
id = mydlr
username = foo
password = bar
tnsname = dlr
max-connections = 1

group = dlr-db
id = mydlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

83

Chapter 7. Setting up a SMS Gateway

PostgreSQL DLR storage
To store DLR information into a PostgreSQL database you may use the dlr-storage = pgsql

configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a pgsql-connection group that defines the connection to the
PostgreSQL server itself.

Here is the example configuration:

group = pgsql-connection
id = mydlr
host = myhost.com
username = foo
password = bar
database = dlr
max-connections = 1

group = dlr-db
id = mydlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

MS-SQL/Sybase DLR storage
To store DLR information into a MS-SQL or Sybase (via FreeTDS) database you may use the
dlr-storage = mssql configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a mssql-connection group that defines the connection to the MS-SQL
or Sybase server itself.

Please note that the server configuration directive must match the corresponding [section] on
freetds.conf

Here is the example configuration:

group = mssql-connection
id = msdlr
server = myservername
username = foo
password = bar
database = dlr

84

Chapter 7. Setting up a SMS Gateway

max-connections = 1

group = dlr-db
id = msdlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

SQLite3 DLR storage
To store DLR information into a SQLite3 database you may use the dlr-storage = sqlite3

configuration directive in the core group.

In addition to that you must have a dlr-db group defined that specifies the table field names that are
used to the DLR attributes and a sqlite3-connection group that defines the connection to the
SQLite3 database itself.

Here is the example configuration:

group = sqlite3-connection
id = mydlr
database = /path/to/file
max-connections = 1

group = dlr-db
id = mydlr
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

85

Chapter 7. Setting up a SMS Gateway

Redis DLR storage
To store DLR information using the Redis (http://www.redis.io) keystore, you should set the
dlr-storage = redis configuration directive in the core group.

In addition, you must have a dlr-db group defined that specifies the key and hash field names that are
used to store the DLR attributes and a redis-connection group that defines the connection to the
Redis server.

Since Redis is a keystore and not a SQL database, keys and not tables are used to store DLR attributes.
For ease of configuration, the same configuration parameters in the dlr-db group that are used to define
SQL tables in other DLR storage engines are used to configure key names in Redis. DLRs are stored as
Redis hash keys with a separate key for each DLR. Key names are in the format
<table>:<smsc>:<timestamp>. Some SMSCs also append the destination to the DLR keyname
resulting DLR keynames in the format <table>:<smsc>:<timestamp>:<destination>. You can
specify the <table> portion of the keyname by specifying the table value in the dlr-db group.

In addition to one key per DLR, an additional key with a name in the format <table>:Count is created
to maintain a count of the total number of outstanding DLRs.

Here is the example configuration from doc/examples/dlr-redis.conf:

group = redis-connection
id = mydlr
host = localhost
port = 6379
#password = foo
database = 2
idle-timeout = 3600
max-connections = 1

group = dlr-db
id = mydlr
ttl = 604800
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

Redis connection configuration

To define a Redis connection you need to specify a redis-connection group as follows:

86

Chapter 7. Setting up a SMS Gateway

Table 7-5. Redis Connection Group Variables

Variable Value Description
group redis-connection This is a mandatory variable

id (m) string

An optional name or id to
identify this Redis connection for
internal reference with other
Redis related configuration
groups. Any string is acceptable,
but semicolon ’;’ may cause
problems, so avoid it and any
other special non-alphabet
characters.

host (m) hostname or IP
Hostname or IP of a server

running Redis to connect to.

password password

If the Redis server is secured
with a password in redis.conf, it
must be specified here. By
default, Redis servers are
unsecured and in that case, this
parameter may be ommitted.

database integer

The numeric ID (0-15) of the
Redis database to use. Ideally
this database should be dedicated
to storing Redis DLRs since a
separate key wil be created for
each DLR. If this variable is
ommitted, the default database
(0) will be used.

idle-timeout integer

The number of seconds that
Redis should hold the connection
open without any traffic. Some
Redis servers are configured to
disconnect idle clients very
quickly, and if this is the case
you should set this value to
something more reasonable. If
ommitted, the Redis server-wide
timeout from redis.conf will
apply.

max-connections integer
How many connections should

be opened to the Redis server.

87

Chapter 7. Setting up a SMS Gateway

Cassandra DLR storage
To store DLR information using Cassandra (http://cassandra.apache.org/) database, you should set the
dlr-storage = cassandra configuration directive in the core group.

In addition, you must have a dlr-db group defined that specifies the field names that are used to store
the DLR attributes and a cassandra-connection group that defines the connection to Cassandra.

Here is the example configuration from doc/examples/dlr-cassandra.conf:

group = cassandra-connection
id = mydlr
host = localhost
#username = foo
#password = bar
#database = dlr
max-connections = 1

group = dlr-db
id = mydlr
ttl = 604800
table = dlr
field-smsc = smsc
field-timestamp = ts
field-destination = destination
field-source = source
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

DLR database field configuration
For external database storage of DLR information in relational database management systems (RDBMS)
you will have to specify which table field are used to represent the stored data. This is done via the
dlr-db group as follows:

Table 7-6. DLR Database Field Configuration Group Variables

Variable Value Description
group dlr-db This is a mandatory variable

88

Chapter 7. Setting up a SMS Gateway

Variable Value Description

id (m) string

An id to identify which external
connection should be used for
DLR storage. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

table (m) string

The name of the table that is
used to store the DLR
information.

field-smsc (m) string
The table field that is used for

the smsc data.

field-timestamp (m) string
The table field that is used for

the timestamp data.

field-destination (m) string
The table field that is used for

the destination number data.

field-source (m) string
The table field that is used for

the source number data.

field-service (m) string
The table field that is used for

the service username data.

field-url (m) string

The table field that is used for
the DLR URL which is triggered
when the DLR for this message
arrives from the SMSC.

field-mask (m) string

The table field that is used for
the DLR mask that has been set
for a message.

field-status (m) string

The table field that is used to
reflect the status of the DLR for a
specific message.

field-boxc-id (m) string

The table field that is used to
store the smsbox connection id
that has passed the message for
delivery. This is required in cases
you want to guarantee that DLR
messages are routed back to the
same smsbox conn instance. This
is done via the smsbox routing. If
you don’t use smsbox routing
simply add this field to your
database table and keep it empty.

A sample ’dlr-db’ group:

89

Chapter 7. Setting up a SMS Gateway

group = dlr-db
id = dlr-db
table = dlr
field-smsc = smsc
field-timestamp = ts
field-source = source
field-destination = destination
field-service = service
field-url = url
field-mask = mask
field-status = status
field-boxc-id = boxc

Beware that all variables in this group are mandatory, so you have to specify all fields to enable
bearerbox to know how to store and retrieve the DLR information from the external storage spaces.

SMSBox configuration

Smsbox group
You must define an ’smsbox’ group into the configuration file to be able to use SMS Kannel. The
simplest working ’smsbox’ group looks like this:

group = smsbox
bearerbox-host = localhost

...but you would most probably want to define ’sendsms-port’ to be able to use SMS push.

SMSBox inherits from core the following fields:

smsbox-port
http-proxy-port
http-proxy-host
http-proxy-username
http-proxy-password
http-proxy-exceptions
http-proxy-exceptions-regex
ssl-certkey-file

Table 7-7. Smsbox Group Variables

Variable Value Description
group (m) smsbox This is a mandatory variable

bearerbox-host (m) hostname

The machine in which the
bearerbox is.

90

Chapter 7. Setting up a SMS Gateway

Variable Value Description

bearerbox-port (o) port-number

This is the port number to which
smsbox will connect bearerbox.
If not given smsbox-port from
core group used.

bearerbox-port-ssl (o) bool

If set to true, the smsbox
connection will be SSL-enabled.
Your smsbox will connect using
SSL to the bearerbox then. This
is used to secure communication
between bearerbox and smsboxes
in case they are in separate
networks operated and the TCP
communication is not secured on
a lower network layer. If not
given smsbox-port-ssl from
core group used.

smsbox-id (o) string

Optional smsbox instance
identifier. This is used to identify
an smsbox connected to an
bearerbox for the purpose of
having smsbox specific routing
inside bearerbox. So if you you
own boxes that do pass messages
into bearerbox for delivery you
may want that answers to those
are routed back to your specific
smsbox instance, i.e. SMPP or
EMI proxying boxes.

sendsms-interface (o) string

If this is set, the sendsms HTTP
interface will only bind to a
specified address. For example:
"127.0.0.1".

sendsms-port (c) port-number

The port in which any sendsms
HTTP requests are done. As with
other ports in Kannel, can be set
as anything desired.

sendsms-port-ssl (o) bool

If set to true, the sendsms HTTP
interface will use a SSL-enabled
HTTP server with the specified
ssl-server-cert-file and
ssl-server-key-file from the core
group. Defaults to "no".

sendsms-url (o) url

URL locating the sendsms
service. Defaults to
/cgi-bin/sendsms.

91

Chapter 7. Setting up a SMS Gateway

Variable Value Description

sendota-url (o) url

URL locating the sendota
service. Defaults to
/cgi-bin/sendota.

immediate-sendsms-reply

(o)

boolean

This is a backward compatibility
flag: when set, Kannel will
immediately answer to any
sendsms requests, without
knowing if the bearerbox will
ever accept the message. If set to
false (default), smsbox will not
reply to HTTP request until the
bearerbox has received the
message.

sendsms-chars string

Only these characters are
allowed in ’to’ field when
send-SMS service is requested
via HTTP. Naturally, you should
allow at least 0123456789. The
space character (’ ’) has special
meaning: it is used to separate
multiple phone numbers from
each other in multi-send. To
disable this feature, do not have
it as an accepted character. If this
variable is not set, the default set
"0123456789 +-" is used.

global-sender phone-number

If set, all sendsms originators are
set as these before proceeding.
Note that in a case of most SMS
centers you cannot set the sender
number, but it is automatically
set as the number of SMSC

log-file filename

As with the bearerbox ’core’
group. Access-log is used to
store information about MO and
send-sms requests. Can be
named same as the ’main’
access-log (in ’core’ group).

log-level number 0..5

access-log filename

92

Chapter 7. Setting up a SMS Gateway

Variable Value Description

syslog-level number

Messages of this log level or
higher will also be sent to syslog,
the UNIX system log daemon. If
not explicitly set with
syslog-facility, it logs
under the ’daemon’ category.
The default is not to use syslog,
and you can set that explicitly by
setting syslog-level to
’none’.

syslog-facility string

The syslog facility to send the
syslog entries to. The default is
’daemon’.

white-list URL

Load a list of accepted
destinations of SMS messages. If
a destination of an SMS message
is not in this list, any message
received from the HTTP
interface is rejected. See notes of
phone number format from
numhash.h header file.

black-list URL

As white-list, but SMS messages
to these numbers are
automatically discarded

reply-couldnotfetch string

If set, replaces the SMS message
sent back to user when Kannel
could not fetch content. Defaults
to Could not fetch

content, sorry..

reply-couldnotrepresent string

If set, replaces the SMS message
sent back when Kannel could not
represent the result as a SMS
message. Defaults to Result

could not be represented

as an SMS message..

reply-requestfailed string

If set, replaces the SMS message
sent back when Kannel could not
contact http service. Defaults to
Request Failed.

reply-emptymessage string

If set, replaces the SMS message
sent back when message is
empty. Set to "" to enable empty
messages. Defaults to <Empty

reply from service

provider>.

93

Chapter 7. Setting up a SMS Gateway

Variable Value Description

mo-recode boolean

If enabled, Kannel will try to
convert received messages with
UCS-2 charset to
WINDOWS-1252 or to UTF-8,
simplifying external servers jobs.
If Kannel is able to recode
message, it will also change
coding to 7 bits and charset
to windows-1252 or to utf-8.

http-request-retry integer

If set, specifies how many retries
should be performed for failing
HTTP requests of sms-services.
Defaults to 0, which means no
retries should be performed and
hence no HTTP request queuing
is done.

http-queue-delay integer

If set, specifies how many
seconds should pass within the
HTTP queuing thread for
retrying a failed HTTP request.
Defaults to 10 sec. and is only
obeyed if
http-request-retry is set to
a non-zero value.

white-list-regex POSIX regular expression

Defines the set of accepted
destinations of SMS messages. If
a destination of an SMS message
is not in this set, any message
received from the HTTP
interface is rejected. See section
on Regular Expressions for
details.

black-list-regex POSIX regular expression

As white-list-regex, but SMS
messages to numbers within in
this set are automatically
discarded. See section on
Regular Expressions for details.

max-pending-requests number of messages

Maximum number of pending
MO or DLR messages that are
handled in parallel. (Default:
512)

http-timeout seconds

Sets socket timeout in seconds
for outgoing client http
connections. Optional. Defaults
to 240 seconds.

94

Chapter 7. Setting up a SMS Gateway

Variable Value Description

sms-length number

Maximum allowed number of
characters for a single SMS in
smsbox. If this maximum
exceeds Kannel will split SMS
into multiparts. Default: 140

A typical ’smsbox’ group could be something like this:

group = smsbox
bearerbox-host = localhost
sendsms-port = 13131
sendsms-chars = "0123456789 "
global-sender = 123456
access-log = "kannel.access"
log-file = "smsbox.log"
log-level = 0

Smsbox routing inside bearerbox
The communication link between bearerbox and smsbox has been designed for the purpose of
load-balancing via random assignment. Which means, bearerbox holds all smsc connections and passes
inbound message to one of the connected smsboxes. So you have a determined route for outbound
messages, but no determined route for inbound messages.

The smsbox routing solves this for the inbound direction. In certain scenarios you want that bearerbox to
know to which smsbox instance it should pass messages. I.e. if you implement own boxes that pass
messages to bearerbox and expect to receive messages defined on certain rules, like receiver number or
smsc-id. This is the case for EMI/UCP and SMPP proxies that can be written easily using smsbox
routing facility.

If you box handles the SMPP server specific communication to your EMSEs, and if an client send a
submit_sm PDU, the box would transform the message into Kannel message representation and inject
the message to bearerbox as if it would be an smsbox. As you want to assign your clients shortcodes for
certain networks or route any inbound traffic from a certain smsc link connected to bearerbox, you need
to separate in the scope of bearerbox where the inbound message will be going to. An example may look
like this:

group = smsbox
...
smsbox-id = mysmsc
...

group = smsbox-route
smsbox-id = mysmsc
shortcode = "1111;2222;3333"

95

Chapter 7. Setting up a SMS Gateway

Which means any inbound message with receiver number 1111, 2222 or 3333 will be delivered to the
smsbox instance that has identified itself via the id "mysmsc" to bearerbox. Using this routing the
smsbox instance (which may be an EMI/UCP or SMPP proxy) is able to send a deliver_sm PDU.
Another example showing the combination use of criteria smsc-id and shortcode looks like this:

group = smsbox
...
smsbox-id = mysmsc
...

group = smsbox-route
smsbox-id = mysmsc
smsc-id = "A;B;C"
shortcode = "1111;2222"

Which means any inbound message with receiver number 1111 or 2222 that have been originating from
the smsc-id connections A, B or C will be delivered to the via the id "mysmsc" to bearerbox.

smsbox-route inherits from core the following fields:

Table 7-8. Smsbox-route Group Variables

Variable Value Description
group (m) smsbox-route This is a mandatory variable

smsbox-id (m) string

Defines for which smsbox
instance the routing rules do
apply.

smsc-id word-list

If set, specifies from which
smsc-ids all inbound messages
should be routed to this smsbox
instance. List contains smsc-ids
separated by semicolon (";").
This rule may be used to pull any
smsc specific message stream to
an smsbox instance. If used in
combination with config
directive shortcode, then this is
another matching criteria for the
routing decission.

96

Chapter 7. Setting up a SMS Gateway

Variable Value Description

shortcode number-list

If set, specifies which receiver
numbers for inbound messages
should be routed to this smsbox
instance. List contains numbers
separated by semicolon (";").
This rule may be used to pull
receiver number specific message
streams to an smsbox instance. If
used in combination with config
directive smsc-id, then only
messages originating from the
connections in the smsc-id are
matched against the shortcode
list.

SMS-service configurations
Now that you have an SMS center connection to send and receive SMS messages you need to define
services for incoming messages. This is done via ’sms-service’ configuration groups.

These groups define SMS services in the smsbox, so they are only used by the smsbox. Each service is
recognized from the first word in an SMS message and by the number of arguments accepted by the
service configuration (unless catch-all configuration variable is used). By adding a username and
password in the URL in the following manner "http://luser:password@host.domain:port/path?query" we
can perform HTTP Basic authentication.

The simplest service group looks like this:

group = sms-service
keyword = www
get-url = "http://%S"

This service grabs any SMS with two words and ’www’ as the first word, and then does an HTTP request
to an URL which is taken from the rest of the message. Any result is sent back to the phone (or
requester), but is truncated to the 160 characters that will fit into an SMS message, naturally.

Service group default has a special meaning: if the incoming message is not routed to any other
service, default ’sms-service’ group is used. You should always define default service.

Service group black-list has a special meaning: if the incoming message is in service’s black-list, this
service is used to reply to user. If unset, message will be discarded.

Table 7-9. SMS-Service Group Variables

Variable Value Description
group (m) sms-service This is a mandatory variable

97

Chapter 7. Setting up a SMS Gateway

Variable Value Description

keyword (m) word

Services are identified by the
first word in the SMS. Each ‘%s’
in the URL corresponds to one
word in the SMS message.
Words are separated with spaces.
A keyword is matched only if the
number of words in the SMS
message is the same as the
number of ‘%s’ fields in the
URL. This allows you to
configure the gateway to use
different URLs for the same
keyword depending on the
number of words the SMS
message contains. The keyword
is case insensitive, which means
you don’t have to use aliases to
handle different cased versions
of your keyword.

keyword-regex POSIX regular expression

This field may be used to enable
service-selection based on a
regular expression. You can
define either keyword or
keyword-regex in configuration,
but not both in the same
sms-service. keyword-regex is
case sensitive. See section on
Regular Expressions for details.

aliases word-list

If the service has aliases, they
are listed as a list with each entry
separated with a semicolon (’;’).
Aliases are case insensitive just
like keyword.

name string

Optional name to identify the
service in logs. If unset,
keyword is used.

get-url (c) URL

Requested URL. The url can
include a list of parameters,
which are parsed before the url is
fetched. See below for these
parameters. Also works with
plain ’url’

98

Chapter 7. Setting up a SMS Gateway

Variable Value Description

post-url (c) URL

Requested URL. As above, but
request is done as POST, not
GET. Always matches the
keyword, regardless of pattern
matching. See notes on POST
other where.

post-xml (c) URL

Requested URL. As above, but
request is done as XML POST.
Always matches the keyword,
regardless of pattern matching.
See notes on POST other where
and XML Post

file (c) filename

File read from a local disc. Use
this variable only if no url is set.
All escape codes (parameters) in
url are supported in filename.
The last character of the file
(usually linefeed) is removed.

text (c) string

Predefined text answer. Only if
there is neither url nor file set.
Escape codes (parameters) are
usable here, too.

exec (c) string

Executes the given shell
command as the current UID of
the running smsbox user and
returns the output to stdout as
reply. Escape codes (parameters)
are usable here, too. BEWARE:
You may harm your system if
you use this sms-service type
without serious caution! Make
sure anyone who is allowed to
use these kind of services is
checked using white/black-list
mechanisms for security reasons.

accepted-smsc id-list

Accept ONLY SMS messages
arriving from SMSC with
matching ID. a Separate multiple
entries with ’;’. For example, if
accepted-smsc is "RL;SON",
accept messages which originate
from SMSC with ID set as ’RL’
or ’SON’

99

Chapter 7. Setting up a SMS Gateway

Variable Value Description

accepted-account id-list

Accept ONLY SMS messages
arriving with a matching
ACCOUNT field. b Separate
multiple entries with ’;’. For
example, if accepted-account
is "FOO;BAR", accept messages
which originate with the
ACCOUNT field set as ’FOO’ or
’BAR’

allowed-prefix prefix-list

A list of phone number prefixes
of the sender number which are
accepted to be received by this
service. c Multiple entries are
separated with semicolon (’;’).
For example, "91;93" selects this
service for these prefixes. If
denied-prefix is unset, only this
numbers are allowed. If denied is
set, number are allowed if
present in allowed or not in
denied list.

denied-prefix prefix-list

A list of phone number prefixes
of the sender number which are
NOT accepted to be sent through
this SMSC.

allowed-receiver-prefix prefix-list

A list of phone number prefixes
of the receiver number which are
accepted to be received by this
service. This may be used to
allow only inbound SMS to
certain shortcut numbers to be
allowed to this service.

denied-receiver-prefix prefix-list

A list of phone number prefixes
of the receiver number which are
NOT accepted to be sent through
this SMSC.

catch-all bool
Catch keyword regardless of

’%s’ parameters in pattern.

send-sender bool

Used only with POST. If set to
true, number of the handset is
set, otherwise not.

strip-keyword bool

Used only with POST. Remove
matched keyword from message
text before sending it onward.

100

Chapter 7. Setting up a SMS Gateway

Variable Value Description

faked-sender phone-number

This number is set as sender.
Most SMS centers ignore this,
and use their fixed number
instead. This option overrides all
other sender setting methods.

max-messages number

If the message to be sent is
longer than maximum length of
an SMS it will be split into
several parts. max-messages
lets you specify a maximum
number of individual SMS
messages that can be used. If
max-messages is set to 0, no
reply is sent, except for error
messages.

accept-x-kannel-headers bool

Request reply can include
special X-Kannel headers but
these are only accepted if this
variable is set to true. See
Extended headers.

assume-plain-text bool

If client does not set
Content-Type for reply, it is
normally
application/octet-stream which is
then handled as data in Kannel.
This can be forced to be
plain/text to allow backward
compatibility, when data was not
expected.

concatenation bool

Long messages can be sent as
independent SMS messages with
concatenation = false or
as concatenated messages with
concatenation = true.
Concatenated messages are
reassembled into one long
message by the receiving device.

split-chars string

Allowed characters to split the
message into several messages.
So, with "#!" the message is split
from last ’#’ or ’!’, which is
included in the previous part.

101

Chapter 7. Setting up a SMS Gateway

Variable Value Description

split-suffix string

If the message is split into
several ones, this string is
appended to each message except
the last one.

omit-empty bool

Normally, Kannel sends a
warning to the user if there was
an empty reply from the service
provider. If omit-empty is set to
’true’, Kannel will send nothing
at all in such a case.

header string

If specified, this string is
automatically added to each
SMS sent with this service. If the
message is split, it is added to
each part.

footer string
As header, but not inserted into

head but appended to end.

prefix string

Stuff in answer that is cut away,
only things between prefix and
suffix is left. Not case sensitive.
Matches the first prefix and then
the first suffix. These are only
used for url type services, and
only if both are specified.

suffix string

white-list URL

Load a list of accepted senders
of SMS messages. If a sender of
an SMS message is not in this
list, any message received from
the SMSC is rejected, unless a
black-list service is defined.
See notes of phone number
format from numhash.h header
file.

black-list URL

As white-list, but SMS messages
from these numbers are
automatically discarded

accepted-smsc-regex POSIX regular expression

Accept only SMS messages
arriving from SMSCs with a
matching ID. d See section on
Regular Expressions for details.

102

Chapter 7. Setting up a SMS Gateway

Variable Value Description

accepted-account-regex POSIX regular expression

Accept ONLY SMS messages
arriving with a matching
ACCOUNT field. e See section
on Regular Expressions for
details.

allowed-prefix-regex POSIX regular expression

A set of phone number prefixes
of sender-numbers accepted by
this service. f See section on
Regular Expressions for details.

denied-prefix-regex POSIX regular expression

A set of phone number prefixes
of sender-numbers which may
not use this service. See section
on Regular Expressions for
details.

allowed-receiver-prefix-regexPOSIX regular expression

A set of phone number prefixes
of receiver-numbers which may
receive data sent by this service.
This can be used to allow only
inbound SMS to certain shortcut
numbers to be allowed to this
service. See section on Regular
Expressions for details.

denied-receiver-prefix-regexPOSIX regular expression

A set of phone number prefixes
of receiver-numbers which may
not receive data sent by this
service. See section on Regular
Expressions for details.

white-list-regex POSIX regular expression

Defines a set of accepted senders
of SMS messages. If a sender of
an SMS message is not in this
list, the message is rejected. See
section on Regular Expressions
for details.

black-list-regex POSIX regular expression

As white-list-regex, but SMS
messages from these numbers are
automatically discarded. See
section on Regular Expressions
for details.

103

Chapter 7. Setting up a SMS Gateway

Variable Value Description

alt-charset string

Defines which character
encoding is used for the SMS
message when passed to a
remote HTTP application. This
includes how the SMS message
text is send in the HTTP GET
parameter list and in the HTTP
POST bidy. Uses iconv()
routines to convert from and to
that specific character set
encoding. See your local
iconv_open(3) manual page
for the supported character
encodings and the type strings
that should be presented for this
directive.

dlr-url string (URL)

Optional Defines a default URL
which is fetched for DLR event,
if no specific X-Kannel HTTP
header parameter is returned by
the HTTP response.

dlr-mask number (bit mask)

Optional. Defines a default DLR
event bit mask which is used in
combination with the dlr-url
config directive, if no specific
X-Kannel HTTP header
parameter is returned by the
HTTP response.

Notes:
a. Even if this service is denied, Kannel still searches for other service which accepts the message, or
default service.
b. Even if this service is denied, Kannel still searches for other service which accepts the message, or
default service.
c. Like in accepted-smsc, Kannel still searches for other service which accepts the message. This way
there could be several services with the same keyword and different results.
d. Even if this service is denied, Kannel still searches for other service which accepts the message, or
default service.
e. Even if this service is denied, Kannel still searches for other service which accepts the message, or
default service.
f. Like in accepted-smsc-regex, Kannel still searches for another service which accepts the message.
This way there could be several services with the same keyword and different results.

Table 7-10. Parameters (Escape Codes)

104

Chapter 7. Setting up a SMS Gateway

%k the keyword in the SMS request (i.e., the first
word in the SMS message)

%s next word from the SMS message, starting with
the second one (i.e., the first word, the keyword, is
not included); problematic characters for URLs are
encoded (e.g., ’+’ becomes ’%2B’)

%S same as %s, but ’*’ is converted to ’~’ (useful
when user enters a URL) and URL encoding isn’t
done (all others do URL encode)

%r words not yet used by %s; e.g., if the message is
"FOO BAR FOOBAR BAZ", and the has been one
%s, %r will mean "FOOBAR BAZ"

%a all words of the SMS message, including the first
one, with spaces squeezed to one

%b the original SMS message, in a binary form
(URL-encoded)

%e the original SMS message, in a binary form
(printable hexadecimal byte codes). I.e. "xyz"
would be send as byte codes "78797A".

%t the time the message was sent, formatted as
"YYYY-MM-DD HH:MM", e.g., "1999-09-21
14:18"

%T the time the message was sent, in UNIX epoch
timestamp format

%p the phone number of the sender of the SMS
message

%P the phone number of the receiver of the SMS
message

%q like %p, but a leading ‘00’ is replaced with ‘+’

%Q like %P, but a leading ‘00’ is replaced with ‘+’

%i the smsc-id of the connection that received the
message

%I the SMS ID of the internal message structure

%d the delivery report value

%R the delivery report URL value

%N the delivery report notification message

%D meta-data from the SMSC. See Meta Data for
more into.

%A the delivery report SMSC reply, if any

%F the foreign (smsc-provided) message ID. Only
relevant on DLR url’s.

%n the sendsms-user or sms-service name

105

Chapter 7. Setting up a SMS Gateway

%c message coding: 0 (default, 7 bits), 1 (8 bits) or 2
(Unicode)

%m message class bits of DCS: 0 (directly to display,
flash), 1 (to mobile), 2 (to SIM) or 3 (to SIM
toolkit).

%M mwi (message waiting indicator) bits of DCS: 0
(voice), 1, (fax), 2 (email) or 3 (other) for
activation and 4, 5, 6, 7 for deactivation
respectively.

%C message charset: for a "normal" message, it will
be "GSM" (coding=0), "binary" (coding=1) or
"UTF-16BE" (coding=2). If the message was
successfully recoded from Unicode, it will be
"WINDOWS-1252"

%u udh of incoming message (URL-encoded)

%U udh of incoming message (printable hexadecimal
byte codes). I.e. "xyz" would be send as byte codes
"78797A".

%B billing identifier/information of incoming
message. The value depends on the SMSC module
and the associated billing semantics of the specific
SMSC providing the information. For EMI2 the
value is the XSer 0c field, for SMPP MO it is the
service_type of the deliver_sm PDU, and for
SMPP DLR it is the DLR message err component.
(Note: This is used for proxying billing
information to external applications. There is no
semantics associated while processing these.)

%o account identifier/information of incoming
message. The value depends on the SMSC module
and has been introduced to allow the forwarding of
an operator ID from aggregator SMSCs to the
application layer, hence the smsbox HTTP calling
instance.

%O DCS (Data coding schema) value.

%f Originating SMSC of incoming message. The
value is set if the AT driver is used to receive a
SMS on a gsm modem. The value of %f will
contain the number of the SMSC sending the SMS
to the SIM card. Other SMSC types than AT do
not set this field so it will be empty.

%x the smsbox-id of the message, identifying from
which smsbox connection the message is
originating. (Only available withing the
access-log-format directive)

106

Chapter 7. Setting up a SMS Gateway

%v Validity period in minutes. Available only if
SMSC supports and sent this value.

%V Deferred in minutes. Available only if SMSC
supports and sent this value.

%# This allows to pass meta-data individual
parameters into urls. The syntax is as follows:
%#group#parameter# For example:
%#smpp#my_param# would be replaced with the
value ’my_param’ from the group ’smpp’ coming
inside the meta_data field.

Some sample ’sms-service’ groups:

group = sms-service
keyword = nop
text = "You asked nothing and I did it!"
catch-all = true

group = sms-service
keyword = complex
get-url = "http://host/service?sender=%p&text=%r"
accept-x-kannel-headers = true
max-messages = 3
concatenation = true

group = sms-service
keyword = default
text = "No action specified"

How sms-service interprets the HTTP response
When an sms-service requests a document via HTTP, it will accept one of four types of content types:

text/plain Blanks are squeezed into one, rest is chopped to fit
an SMS message.

text/html Tags are removed, rest is chopped to fit an SMS
message.

text/vnd.wap.wml Processed like HTML.
text/xml Processed as a POST-XML. See XML Post

application/octet-stream The body will be transmitted as the SMS message,
as 8-bit data. This can be avoided by setting
assume-plain-text variable on for the
SMS-service.

107

Chapter 7. Setting up a SMS Gateway

Extended headers

Kannel uses and accepts several X-Kannel headers to be used with SMS-services, if option
accept-x-kannel-headers was provided in the relevant ’sms-service’ group.

Table 7-11. X-Kannel Headers

SMSPush equivalent X-Kannel Header
username X-Kannel-Username

password X-Kannel-Password

from X-Kannel-From

to X-Kannel-To

text request body

charset charset as in Content-Type: text/html;

charset=ISO-8859-1

udh X-Kannel-UDH

smsc X-Kannel-SMSC

flash X-Kannel-Flash (deprecated, see
X-Kannel-MClass

mclass X-Kannel-MClass

mwi X-Kannel-MWI

compress X-Kannel-Compress

coding X-Kannel-Coding. If unset, defaults to 0 (7 bits)
if Content-Type is text/plain , text/html
or text/vnd.wap.wml. On
application/octet-stream, defaults to 8 bits
(1). All other Content-Type values are rejected.

validity X-Kannel-Validity

deferred X-Kannel-Deferred

dlr-mask X-Kannel-DLR-Mask

dlr-url X-Kannel-DLR-Url

account X-Kannel-Account

pid X-Kannel-PID

alt-dcs X-Kannel-Alt-DCS

binfo X-Kannel-BInfo

rpi X-Kannel-RPI

priority X-Kannel-Priority

meta-data X-Kannel-Meta-Data

108

Chapter 7. Setting up a SMS Gateway

Kannel POST

Kannel can do POST if service is contains a post-url="...".

Table 7-12. X-Kannel Post Headers

Parameter (escape code)
equivalent

X-Kannel Header Notes

%p (from) X-Kannel-From Only sent if send-sender is
true

%P (to) X-Kannel-To

%t (time) X-Kannel-Time

%u (udh) X-Kannel-UDH in hex format:
06050415820000

%i (smsc) X-Kannel-SMSC

- (mclass) X-Kannel-MClass

- (pid) X-Kannel-PID

- (alt-dcs) X-Kannel-Alt-DCS

- (mwi) X-Kannel-MWI

%c (coding) X-Kannel-Coding 0=7 Bits, 1=8 Bits, 2=UCS-2

- (compress) X-Kannel-Compress

- (validity) X-Kannel-Validity

- (deferred) X-Kannel-Deferred

%n (service name) X-Kannel-Service

%D (meta-data) X-Kannel-Meta-Data Meta-Data (Only SMPP TLV’s
supported at the moment)

%a or %r (text) request body Kannel send all words (%a)
unless strip-keyword is true

%C (charset) present in Content-Type HTTP Example: Content-Type:
text/plain;

charset=ISO-8859-1

XML Post

Kannel can send and receive XML POST with the following format:

<?xml version="1.0"?>
<!DOCTYPE ...>
<message>
<submit>
<da><number>destination number (to)</number></da>
<oa><number>originating number (from)</number></oa>
<ud>user data (text)</ud>
<udh>user data header (udh)</udh>
<meta-data>meta-data</meta-data>
<dcs>

109

Chapter 7. Setting up a SMS Gateway

<mclass>mclass</mclass>
<coding>coding</coding>
<mwi>mwi</mwi>
<compress>compress</compress>
<alt-dcs>alt-dcs</alt-dcs>

</dcs>
<pid>pid</pid>
<rpi>rpi</rpi>
<vp>
<delay>validity time in minutes</delay>

</vp>
<timing>
<delay>deferred time in minutes</delay>

</timing>
<statusrequest>
<dlr-mask>dlr-mask</dlr-mask>
<dlr-url>dlr-url</dlr-url>

</statusrequest>

<!-- request from application to Kannel -->
<from>
<user>username</user>
<username>username</username>
<pass>password</pass>
<password>password</password>
<account>account</account>

</from>
<to>smsc-id</to>

<!-- request from Kannel to application -->
<from>smsc-id</from>
<to>service-name</to>

</submit>
</message>

Note: Don’t forget to set POST Content-Type to text/xml!

There could be several da entries for sendsms-user to enable multi-recipient messages. da doesn’t
make sense in sms-service.

udh is the same format as X-Kannel-UDH. Example: <udh>06050415820000</udh>.

On Kannel->application, from is the smsc-id that message arrives and to is the service name.

On application->Kannel, from contains the credentials (user/username, pass/password and
account and to corresponds to the smsc-id to submit the message.

user and username are equivalent and only one of them should be used. (same for pass and
password.

When application POST in Kannel, as in GET, only user, pass and da are required. Everything else is
optional. (oa could be needed too is there’s no default-sender or forced-sender.

110

Chapter 7. Setting up a SMS Gateway

Warning
This is experimental code. XML format could and should change to fully met
IETF’s sms-xml standard (yet in draft) and additional tags needed by Kannel
should be pondered.

SendSMS-user configurations
To enable an SMS push, you must set sendsms-port into the ’smsbox’ group and define one or more
’sendsms-user’ groups. Each of these groups define one account, which can be used for the SMS push,
via HTTP interface (see below)

Table 7-13. SendSMS-User Group Variables

Variable Value Description
group (m) sendsms-user This is a mandatory variable

username (m) string Name for the user/account.

password (m) string
Password for the user (see

HTTP interface, below)

name string As in ’sms-service’ groups.

user-deny-ip IP-list

As other deny/allow IP lists, but
for this user (i.e. this user is not
allowed to do the SMS push
HTTP request from other IPs
than allowed ones). If not set,
there is no limitations.

user-allow-IP IP-list

forced-smsc string

Force SMSC ID as a ’string’
(linked to SMS routing, see
’smsc’ groups)

default-smsc string

If no SMSC ID is given with the
send-sms request (see below),
use this one. No idea to use with
forced-smsc.

default-sender phone-number

This number is set as sender if
not set by from get/post
parameter

faked-sender phone-number As in ’sms-service’ groups

max-messages number

concatenation bool

split-chars string

split-suffix string

omit-empty bool

111

Chapter 7. Setting up a SMS Gateway

Variable Value Description
header string

footer string

allowed-prefix prefix-list

A list of phone number prefixes
which are accepted to be sent
using this username. Multiple
entries are separated with
semicolon (’;’). For example,
"040;050" prevents sending of
any SMS message with prefix of
040 or 050 through this SMSC.
If denied-prefix is unset, only
this numbers are allowed. If set,
number are allowed if present in
allowed or not in denied list.

denied-prefix prefix-list

A list of phone number prefixes
which are NOT accepted to be
sent using this username.

white-list URL

Load a list of accepted
destinations of SMS messages. If
a destination of an SMS message
is not in this list, any message
received from the HTTP
interface is rejected. See notes of
phone number format from
numhash.h header file.

black-list URL

As white-list, but SMS messages
from these numbers are
automatically rejected.

dlr-url URL

Optional. Defines a default URL
which is fetched for DLR event,
if no specific dlr-url CGI
parameter is set in the HTTP
request.

dlr-mask number (bit mask)

Optional. Defines a default DLR
event bit mask which is used in
combination with the dlr-url
config directive, if no specific
dlr-url CGI parameter is set in
the HTTP request.

allowed-prefix-regex POSIX regular expression

A set of phone numbers which
are accepted to be sent using this
username. See section on
Regular Expressions for details.

112

Chapter 7. Setting up a SMS Gateway

Variable Value Description

denied-prefix-regex POSIX regular expression

A set of phone numbers which
may not send using this
username. See section on
Regular Expressions for details.

white-list-regex POSIX regular expression

Defines a set of accepted
destinations of SMS messages. If
a destination of an SMS message
is not in this list, any message
received from the HTTP
interface is rejected. See section
on Regular Expressions for
details.

black-list-regex POSIX regular expression

As white-list-regex, but
SMS messages originating from
a number matching the pattern
are discarded. See section on
Regular Expressions for details.

Some sample ’sendsms-user’ groups:

group = sendsms-user
username = simple
password = elpmis

group = sendsms-user
username = complex
password = 76ftY
user-deny-ip = "*.*.*.*"
user-allow-ip = "123.234.123.234"
max-messages = 3
concatenation = true
forced-smsc = SOL

The second one is very limited and only allows a user from IP "123.234.123.234". On the other hand, the
user can send a longer message, up to 3 SMSes long, which is sent as concatenated SMS.

Over-The-Air configurations
To enable Over-The-Air configuration of phones or other client devices that support the protocol you
need to configure a sendsms-user.ota-setting group is not necessary, you can send settings to the
phone as a XML document, but this method is perhaps more suitable for continuous provisioning.

If you want to send multiple OTA configurations through the smsbox and you do not want to send XML
documents, you will have to declare a ota-id string to the different ota-setting groups.

Table 7-14. OTA Setting Group Variables

113

Chapter 7. Setting up a SMS Gateway

Variable Value Description
group ota-setting This is a mandatory variable

ota-id string

An optional name or id for the
ota-setting. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

location URL

The address of the HTTP server
for your WAP services, i.e.
http://wap.company.com

service string Description of the service

ipaddress IP

IP address of your WAP gateway

phonenumber phone-number

Phone number used to establish
the PPP connection

speed number

Connection speed: 9600 or
14400. Defaults to 9600.

bearer string

Bearer type: data or sms.
Defaults to data.

calltype string

Call type: isdn or analog.
Defaults to isdn.

connection string

Connection type: cont or temp.
Cont uses TCP port 9201 and
Temp uses UDP port 9200.
Defaults to cont.

pppsecurity on or off

Enable CHAP authentication if
set to on, PAP otherwise

authentication

normal or secure. Indicates
whether WTLS should be used
or not. Defaults to normal.

login string Login name.

secret string Login password

A sample ’ota-setting’ group:

group = ota-setting
location = http://wap.company.com
service = "Our company’s WAP site"
ipaddress = 10.11.12.13
phonenumber = 013456789
bearer = data
calltype = analog
connection = cont
pppsecurity = off
authentication = normal
login = wapusr

114

Chapter 7. Setting up a SMS Gateway

secret = thepasswd

And a ’sendsms-user’ to use with it. With concatenation enabled:

group = sendsms-user
username = otauser
password = foo
max-messages = 2
concatenation = 1

Table 7-15. OTA Bookmark Group Variables

Variable Value Description
group ota-bookmark This is a mandatory variable

ota-id string

An optional name or id for the
ota-bookmark. Any string is
acceptable, but semicolon ’;’
may cause problems, so avoid it
and any other special
non-alphabet characters.

url URL

The address of the HTTP server
for your WAP services, i.e.
http://wap.company.com

name string Description of the service

A sample ’ota-bookmark’ group:

group = ota-bookmark
ota-id = wap-link
url = "http://wap.company.com"
service = "Our company’s WAP site"

And a ’sendsms-user’ to use with it, with the same conditions as for the ’ota-setting’ group.

Setting up more complex services
The basic service system is very limited - it can only answer to original requester and it cannot send UDH
data, for example. This chapter explains some more sophisticated and complex SMS service setups.

Redirected replies

The basic service system always sends the answer back to original requester, but sometimes the content
server needs to send something to other terminals or delay the answer. To create such systems, an SMS
push is used.

115

Chapter 7. Setting up a SMS Gateway

The idea is to get the initial request, but then send no reply. Instead, the reply (if any) is sent via HTTP
sendsms-interface as SMS Push. This way the service application has full control of the return content,
and can do all needed formatting beforehand.

Note that when no reply is wanted, remember to set the variable max-messages to zero (0) so that no
reply is sent, unless an error occurs. Simple sample:

group = sms-service
keyword = talk
get-url = "http://my.applet.machine/Servlet/talk?sender=%p&text=%r"
max-messages = 0

Setting up operator specific services

Those running Kannel with several SMS centers might need to define services according to the relying
SMS center. To achieve this, first you need to give an ID name for SMS center connections (see above).
Then use the accepted-smsc variable to define which messages can use that service.

group = sms-service
keyword = weather
accepted-smsc = SOL
get-url = "http://my.applet.machine/Servlet/weather?sender=%p&operator=SOL&text=%r"

Setting up multi-operator Kannel

Sometimes there is a need for Kannel to listen to two (or more) distinct SMS centers, and messages must
be routed to services according to where they came from, and replies likewise must return to same
SMSC. This is done via smsc-id magic. Here is a shortened sample configuration, which handles to
distinct SMS servers and services:

group = smsc
smsc-id = A
denied-smsc-id = B
...

group = smsc
smsc-id = B
denied-smsc-id = A
...

group = sms-service
accepted-smsc = A
get-url = "..."

group = sms-service
accepted-smsc = B
get-url = "..."

As can be seen, the smsc-id is used to identify the SMS center from which the message came. Then, the
denied-smsc-id variable is used to prevent messages originally from the other SMS center from being

116

Chapter 7. Setting up a SMS Gateway

sent through the other one. Finally ’sms-service’ groups are defined with accepted-smsc so that they
only accept messages from certain SMS center.

If you want to use SMS push services, requesters should then set the smsc request parameter, or
’sendsms-user’ groups should be defined like this:

group = sendsms-user
username = operator_A
password = foo
forced-smsc = A

group = sendsms-user
username = operator_B
password = bar
forced-smsc = B

Note that if your SMS centers do not set the sender phone number but rely on number transmitted, you
should set faked-sender to all ’sendsms-user’ groups.

Running SMS gateway

Using the HTTP interface to send SMS messages
After you have configured Kannel to allow the sendsms service, you can send SMS messages via HTTP,
e.g., using a WWW browser. The URL looks something like this:

http://smsbox.host.name:13013/cgi-bin/sendsms?
username=foo&password=bar&to=0123456&text=Hello+world

Thus, technically, you make an HTTP GET request. This means that all the information is stuffed into
the URL. If you want to use this often via a browser, you probably want to make an HTML form for this.

Kannel will answer to sendsms request with following codes and body texts:

Table 7-16. SMS Push reply codes

Status Body Meaning

202 0: Accepted for delivery

The message has been accepted
and is delivered onward to a
SMSC driver. Note that this
status does not ensure that the
intended recipient receives the
message.

117

Chapter 7. Setting up a SMS Gateway

Status Body Meaning

202 3: Queued for later

delivery

The bearerbox accepted and
stored the message, but there was
temporarily no SMSC driver to
accept the message so it was
queued. However, it should be
delivered later on.

4xx (varies)

There was something wrong in
the request or Kannel was so
configured that the message
cannot be in any circumstances
delivered. Check the request and
Kannel configuration.

503 Temporal failure, try

again later.

There was temporal failure in
Kannel. Try again later.

Table 7-17. SMS Push (send-sms) CGI Variables

username (or user) string

Username or account name.
Must be username of the one
’sendsms-user’ group in the
Kannel configuration, or results
in ’Authorization failed’ reply.

password (or pass) string

Password associated with given
username. Must match
corresponding field in the
’sendsms-user’ group of the
Kannel configuration, or
’Authorization failed’ is
returned.

from string

Phone number of the sender.
This field is usually overridden
by the SMS Center, or it can be
overridden by faked-sender

variable in the sendsms-user
group. If this variable is not set,
smsbox global-sender is
used.

118

Chapter 7. Setting up a SMS Gateway

to phone number list

Phone number of the receiver.
To send to multiple receivers,
separate each entry with space (’
’, ’+’ url-encoded) - but note that
this can be deactivated via
sendsms-chars in the
’smsbox’ group.

text string

Contents of the message, URL
encoded as necessary. The
content can be more than 160
characters, but then
sendsms-user group must have
max-messages set more than 1.

charset string

Charset of text message. Used to
convert to a format suitable for 7
bits or to UCS-2. Defaults to
UTF-8 if coding is 7 bits and
UTF-16BE if coding is UCS-2.

udh string

Optional User Data Header
(UDH) part of the message. Must
be URL encoded.

smsc string

Optional virtual smsc-id from
which the message is supposed
to have arrived. This is used for
routing purposes, if any denied
or preferred SMS centers are set
up in SMS center configuration.
This variable can be overridden
with a forced-smsc
configuration variable. Likewise,
the default-smsc variable can
be used to set the SMSC if it is
not set otherwise.

flash number Deprecated. See mclass.

mclass number

Optional. Sets the Message
Class in DCS field. Accepts
values between 0 and 3, for
Message Class 0 to 3, A value of
0 sends the message directly to
display, 1 sends to mobile, 2 to
SIM and 3 to SIM toolkit.

119

Chapter 7. Setting up a SMS Gateway

mwi number

Optional. Sets Message Waiting
Indicator bits in DCS field. If
given, the message will be
encoded as a Message Waiting
Indicator. The accepted values
are 0,1,2 and 3 for activating the
voice, fax, email and other
indicator, or 4,5,6,7 for
deactivating, respectively. This
option excludes the flash
option. a

compress number

Optional. Sets the Compression
bit in DCS Field.

coding number

Optional. Sets the coding
scheme bits in DCS field.
Accepts values 0 to 2, for 7bit,
8bit or UCS-2. If unset, defaults
to 7 bits unless a udh is defined,
which sets coding to 8bits.

validity number (minutes)

Optional. If given, Kannel will
inform SMS Center that it should
only try to send the message for
this many minutes. If the
destination mobile is off other
situation that it cannot receive
the sms, the smsc discards the
message. Note: you must have
your Kannel box time
synchronized with the SMS
Center.

deferred number (minutes)

Optional. If given, the SMS
center will postpone the message
to be delivered at now plus this
many minutes. Note: you must
have your Kannel box time
synchronized with the SMS
Center.

dlrmask number (bit mask) Deprecated. See dlr-mask.

120

Chapter 7. Setting up a SMS Gateway

dlr-mask number (bit mask)

Optional. Request for delivery
reports with the state of the sent
message. The value is a bit mask
composed of: 1: Delivered to
phone, 2: Non-Delivered to
Phone, 4: Queued on SMSC, 8:
Delivered to SMSC, 16:
Non-Delivered to SMSC. Must
set dlr-url on sendsms-user

group or use the dlr-url CGI
variable.

dlrurl string (url) Deprecated. See dlr-url.

dlr-url string (url)

Optional. If dlr-mask is given,
this is the url to be fetched.
(Must be url-encoded)

pid byte

Optional. Sets the PID value.
(See ETSI Documentation). Ex:
SIM Toolkit messages would use
something like
&pid=127&coding=1&alt-dcs=1&mclass=3

alt-dcs number

Optional. If unset, Kannel uses
the alt-dcs defined on smsc
configuration, or 0X per default.
If equals to 1, uses FX. If equals
to 0, force 0X.

rpi number

Optional. Sets the Return Path
Indicator (RPI) value. (See ETSI
Documentation).

account string

Optional. Account name or
number to carry forward for
billing purposes. This field is
logged as ACT in the log file so
it allows you to do some
accounting on it if your front end
uses the same username for all
services but wants to distinguish
them in the log. In the case of a
HTTP SMSC type the account
name is prepended with the
service-name (username) and a
colon (:) and forwarded to the
next instance of Kannel. This
allows hierarchical accounting.

121

Chapter 7. Setting up a SMS Gateway

binfo string

Optional. Billing
identifier/information proxy field
used to pass arbitrary billing
transaction IDs or information to
the specific SMSC modules. For
EMI2 this is encapsulated into
the XSer 0c field, for SMPP this
is encapsulated into the
service_type of the submit_sm
PDU.

priority number

Optional. Sets the Priority value
(range 0-3 is allowed). (Defaults
to 0, which is the lowest
priority).

Notes:
a. To set number of messages, use mwi=[0-3]&coding=0&udh=%04%01%02%<XX>%<YY>, where
YY are the number of messages, in HEX, and XX are mwi plus 0xC0 if text field is not empty.

Using the HTTP interface to send OTA configuration
messages
OTA messages can be sent to mobile phones or devices to auto-configure the settings for WAP. They are
actually complex SMS messages with UDH and sent as concatenated messages if too long (and compiled
if necessary).

You may either pass an HTTP request as GET method or POST method to the HTTP interface.

If you want to send a configuration that is defined within Kannel’s configuration file itself you have to
pass a valid ota-id value otherwise the content of the request will be compiled to as OTA message.

OTA settings and bookmark documents

Here is an example XML document (this one contains CSD settings for logging in to a mobile service;
note that you must store DTD locally):

<?xml version="1.0"?>
<!DOCTYPE CHARACTERISTIC-LIST SYSTEM "file:///gw/settings.dtd">
<CHARACTERISTIC-LIST>

<CHARACTERISTIC TYPE="ADDRESS">
<PARM NAME="BEARER" VALUE="GSM/CSD"/>
<PARM NAME="PROXY" VALUE="10.11.12.13"/>
<PARM NAME="PORT" VALUE="9201"/>
<PARM NAME="CSD_DIALSTRING" VALUE="+12345678"/>
<PARM NAME="PPP_AUTHTYPE" VALUE="PAP"/>
<PARM NAME="PPP_AUTHNAME" VALUE="yourusername"/>
<PARM NAME="PPP_AUTHSECRET" VALUE="yourauthsecret"/>

122

Chapter 7. Setting up a SMS Gateway

<PARM NAME="CSD_CALLTYPE" VALUE="ISDN"/>
<PARM NAME="CSD_CALLSPEED" VALUE="9600"/>

</CHARACTERISTIC>

<CHARACTERISTIC TYPE="URL"
VALUE="http://wap.company.com/"/>

<CHARACTERISTIC TYPE="NAME">
<PARM NAME="NAME" VALUE="Your WAP Company"/>

</CHARACTERISTIC>

</CHARACTERISTIC-LIST>

A bookmark document looks like this:

<?xml version="1.0"?>
<!DOCTYPE CHARACTERISTIC_LIST SYSTEM "file:///gw/settings.dtd">
<CHARACTERISTIC-LIST>
<CHARACTERISTIC TYPE="BOOKMARK">
<PARM NAME="NAME" VALUE="WAP Company"/>
<PARM NAME="URL" VALUE="http://wap.company.com/"/>

</CHARACTERISTIC>
</CHARACTERISTIC-LIST>

Document type definition (DTD) for these documents is not available from Internet, you must supply it
as a file. Kannel gw directory contains an example, settings.dtd.

OTA syncsettings documents

Used for the provisioning of sync configuration to SyncMl enabled handsets. Best supported by
sonyericcsson terminals.

Sample syncsettings documents to set contacts, connection data and authentication:

<SyncSettings>
<Version>1.0</Version>
<HostAddr>http://syncml.server.com</HostAddr>
<RemoteDB>
<CTType>text/x-vcard</CTType>
<CTVer>2.1</CTVer>
<URI>contact</URI>
<Name>Address Book</Name>

</RemoteDB>
<Name>Synchonization</Name>
<Auth>
<AuthLevel>1</AuthLevel>
<AuthScheme>1</AuthScheme>
<Username>yourusername</Username>
<Cred>passwordbase64encoded</Cred>

</Auth>
</SyncSettings>

123

Chapter 7. Setting up a SMS Gateway

OMA provisioning content

OMA provisioning allows the configuration of a wider range of settings than previously available in OTA
terminals. Refer to OMA-WAP-ProvCont-v1_1-20021112-C (at
http://www.openmobilealliance.org/tech/docs/) for details.

A shared secret (i.e. a pin or the phone IMSI) can be used to authenticate the settings. Defaults are
’userpin’ and ’1234’ a. See the cgi variables ’sec’ and ’pin’ for available authentication options.

GET method for the OTA HTTP interface

An example URL (OTA configuration defined in the Kannel configuration file):

http://smsbox.host.name:13013/cgi-bin/sendota?

otaid=myconfig&username=foo&password=bar&to=0123456

URL containing XML document looks like this (you must URL encode it before sending it over HTTP):

http://smsbox.host.name:13013/cgi-bin/sendota?

username=foo&password=bar&to=0123456&

text=MyURLEncodedXMLdocument&type=settings

You can send either settings, bookmark, syncsettings, or oma-settings, set CGI variable type accordingly.
Default for this variable is settings.

Table 7-18. OTA CGI Variables

otaid string

Name or ID of the ’ota-setting’
group in Kannel configuration
that should be sent to the phone.
This variable is optional. If it is
not given the first ’ota-setting’
group is sent. This is unnecessary
when a XML document is send
to the phone.

username string

Username of the ’sendsms-user’
group in Kannel configuration,
that has been configured to send
OTA messages.

password string

Password associated with given
username. Must match
corresponding field in
’sendsms-user’ group in Kannel
configuration, or ’Authorization
failed’ is returned.

to number

Number of the phone that is to
receive the OTA configuration
message.

124

Chapter 7. Setting up a SMS Gateway

from string

Phone number of the sender.
This field is usually overridden
by the SMS Center, or it can be
overridden by faked-sender
variable in the sendsms-user
group. If this variable is not set,
smsbox global-sender is used.

smsc string

Optional virtual smsc-id from
which the message is supposed
to have arrived. This is used for
routing purposes, if any denied
or preferred SMS centers are set
up in SMS center configuration.
This variable can be overridden
with a forced-smsc
configuration variable. Likewise,
the default-smsc variable can
be used to set the SMSC if it is
not set otherwise.

text XML document

An URL encoded XML
document, containing either
settings or bookmarks.

type string

Type of the XML document,
supported values are "settings",
"bookmarks", "syncsettings", and
"oma-settings". Default is
"settings".

sec string

Security model used to
authenticate oma-settings. One
of: "userpin", "netwpin",
"usernetwpin", or "userpinmac".

pin number Authentication token.

125

Chapter 8. Setting up Push Proxy Gateway
This chapter explains how to set up a push proxy gateway (PPG). An example configuration file are
given. A working push proxy gateway is described. Routing wap pushes to a certain smsc and asking for
SMS level delivery reports are described.

Configuring ppg core group, for push initiator (PI)
interface

PPG configuration group defines gateway’s service interface. Configuring a PPG working with a trusted
PI is easiest. Actually, you need no configuration at all: in this case a PPG with default values will be set
up. Do not rely on this, default values may change. For PPG core configuration variables, see table 7.1.

An example of a core configuration for PPG working only with specific addresses follows. Note that
ppg-deny-ip-list is not actually necessary, but does make configuring simpler: IPs here are always denied,
even when they are mentioned in the allowed IPs list.

Ppg-url is a simple stamp, used for routing requests to the right service. You can change this stamp by
setting push-url configuration variable.

group = ppg
ppg-url = /wappush
ppg-port = 8080
concurrent-pushes = 100
users = 1024
ppg-allow-ip = 194.100.32.125;127.0.0.1
ppg-deny-ip = 194.100.32.89;194.100.32.103
trusted-pi = false

Table 8-1. PPG core group configuration variables

Variable Value Description

group ppg
Mandatory value. Tells that we

are configuring the PPG group.

ppg-port number
The port PPG is listening at.

Default 8080.

ppg-ssl-port (o) number

Mandatory value for PPG
HTTPS support. The port at
which PPG listens for HTTPS
requests. There are no defaults;
you must set the value separately.

ssl-server-cert-file string

Mandatory value for PPG
HTTPS support. The file
containing server’s ssl certificate.

126

Chapter 8. Setting up Push Proxy Gateway

Variable Value Description

ssl-server-key-file string

Mandatory value for PPG
HTTPS support. The file
containing server’s ssl private
key.

ppg-url url
URL locating PPG services.

Default /wappush .

global-sender string
Sender phone number required

by some protocols.

concurrent-pushes number

Number of concurrent pushes
expected. Note that PPG does
work even value is too low; it
will only be slower. Default 100.

users number

Number of actually configured
user accounts. Note that PPG
does work even value is too low;
it will only be slower. Default
1024.

trusted-pi boolean

If true, PI does authentication
for PPG. Obviously, both of them
must reside inside same firewall.
Default true. If this variable is
true, all security variables are
ignored (even though they may
be present).

ppg-deny-ip ip-list

PPG will not accept pushes from
these IPs. Wild-cards are
allowed. If this attribute is
missing, no IP is denied by this
list .

ppg-allow-ip ip-list

PPG will accept pushes from
these, and only these, IPs.
Wild-cards are allowed. Adding
this list means that IPs not
mentioned are denied, too.

default-smsc string

If no SMSC ID is given with the
wappush HTTP request (see
below), use this one as default
route for all push messages.

default-dlr string

If no dlr url is given with the
wappush HTTP request (see
below), use this one as default
route for all push messages.

127

Chapter 8. Setting up Push Proxy Gateway

Variable Value Description

ppg-smsbox-id string

All ppg delivery reports are
handled by this smsbox. This
routes all DLR messages inside
beaerbox to the specified smsbox
for processing the HTTP
requests to the DLR-URL.

service-name string
This is sms service name used

by smsbox for wap push.

default-dlr string

If no dlr url is given with the
wappush HTTP request (see
below), use this one as default
route for all push messages.

service-name string
This is sms service name used

by smsbox for wap push..

concatenation boolean

Segment wap push binary sms.
Default on. You need not
normally set this value.

max-messages integer

Maximum number of sm
messages generated. Default 10.
You need not set this variable,
expect when your push
documents are very long.

Configuring PPG user group variables
In addition of pi lists similar to the core group, ppg configuration specific to a certain user contains
variables used for authentication and enforcing restrictions to phone numbers pi may contact. All
variables are elaborated in table 7.2.

As an example, let us see how to configure a ppg user (a pi, named here ’picom’) allowed to send pushes
only from a specified ip.

group = wap-push-user
wap-push-user = picom
ppg-username = foo
ppg-password = bar
allow-ip = 62.254.217.163

It goes without saying that in real systems you must use more complex passwords than bar.

Table 8-2. PPG user group configuration variables

Variable Value Description

group wap-push-user
Mandatory value. Tells that we

are configuring the users group.

128

Chapter 8. Setting up Push Proxy Gateway

Variable Value Description

wap-push-user string
(More) human readable name of

an user.

ppg-username string Username for this user.

ppg-password string Password for this user.

allowed-prefix number-list

Phone number prefixes allowed
in pushes coming from this pi.
These prefixes must conform
international phone number
format.

denied-prefix number-list

Phone number prefixes denied in
pushes coming from this pi.
These prefixes must conform
international phone number
format.

white-list url

Defines an url where from the
white-list can be fetched. White
list itself contains list of phone
numbers accepting pushes from
this pi.

black-list url

Defines an url where from the
blacklist can be fetched.
Blacklist itself contains list of
phone number not accepting
pushes from this pi.

allow-ip ip-list

Defines IPs where from this pi
can do pushes. Adding this list
means that IPs not mentioned are
denied.

deny-ip ip-list

Defines IPs where from this pi
cannot do pushes. IPs not
mentioned in either list are
denied, too.

default-smsc string

If no SMSC ID is given with the
wappush HTTP request (see
below), use this one as default
route for this specific push user.

forced-smsc string

Allow only routing to a defined
SMSC ID for this specific push
user.

dlr-url string

If no dlr is given with the
wappush HTTP request (see
below), use this one as default
route for this specific push user.

129

Chapter 8. Setting up Push Proxy Gateway

Variable Value Description

smsbox-id string
Smsbox handling delivery

reports fro this user.

forced-smsc string

Allow only routing to a defined
SMSC ID for this specific push
user.

white-list-regex POSIX regular expression

Defines the set of
phone-numbers accepting pushes
from this pi. See section on
Regular Expressions for details.

black-list-regex POSIX regular expression

Defines the set of
phone-numbers rejecting pushes
from this pi. See section on
Regular Expressions for details.

allowed-prefix-regex POSIX regular expression

Set of phone number prefixes
allowed in pushes coming from
this pi. See section on Regular
Expressions for details.

denied-list-regex POSIX regular expression

Set of phone number prefixes
denied in pushes coming from
this pi. See section on Regular
Expressions for details.

Finishing ppg configuration
PPG uses SMS for sending SI to the phone and an IP bearer to fetch content specified by it (see chapter
Overview of WAP Push). This means both wapbox and bearer smsc connections are in use. So your push
proxy gateway configuration file must contain groups core, wapbox, smsc and smsbox. These are
configured normal way, only smsc group may have push-specific variables. Note that following
configurations are only an example, you may need more complex ones.

Bearerbox setup does not require any new variables:

group = core
admin-port = 13000
smsbox-port = 13001
wapbox-port = 13002
admin-password = b
wdp-interface-name = "*"
log-file = "filename"
log-level = 1
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1"
unified-prefix = "00358,0"

You must set up wapbox, for pulling (fetching) the wap data, and of course starting the push itself. No
new variables here, either.

130

Chapter 8. Setting up Push Proxy Gateway

group = wapbox
bearerbox-host = localhost
log-file = "filename"
log-level = 0
syslog-level = none

To set up smsc connections, for pushing SI or SL over SMS. Here HTTP SMSC is used as an example.
Variables no-sender and no-coding simplify HTTP request generated by Kannel. Send-url specifies
content gateway, or sendsms service.

group = smsc
smsc = http
smsc-id = HTTP
port = 10000
system-type = kannel
smsc-username = foo
smsc-password = bar
no-sender = true
no-coding = true
send-url = http://host:port/path

To set up smsbox. This is used for ppg delivery reports, see later.

group = smsbox
bearerbox-host = localhost
smsbox-id = dlrbox

Kannel sources contain a sample push configuration file gw/pushkannel.conf.

Running a push proxy gateway
Push proxy gateway is started by simply typing, using separate windows:

gw/bearerbox [config-file]

gw/wapbox [config-file]

You can, of course, use more complex command line options.

An example using HTTP SMSC
An easy way to test and implement push services is to put ppg in the front of an existing sendsms service
capable to send SMS data messages and to understand HTTP requests generated by HTTP SMSC. (See
next chapter.) Then you need only configure SMSC configuration send-url to point to sendsms service.

131

Chapter 8. Setting up Push Proxy Gateway

An example of minimum SI document
Service indication (SI) should work with all types of phones, service loading does not. URL to be loaded
is the main content of the document in both cases, however. Here an example (this is a minimum si
document, not usable for testing, probably, but you want PPG to generate only one one SM per SI, if at
all possible):

<?xml version="1.0"?>
<!DOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0//EN"
"http://www.wapforum.org/DTD/si.dtd">
<si>

<indication href="http://www.gni.ch"
si-id="1@gni.ch">

You have 4 new emails
</indication>

</si>

Note following points: a) Every SI must have different si-id. If there are none, href is used as an (very
unsatisfactory) id. b) this si should not interrupt the phone’s current action.

An example push (tokenized SI) document
HTTP SMSC generates a HTTP get request when it get a send-message event, expressed in Unicode. The
content gateway, or the sendsms service must, of course, understand this URL. So here is an example, cgi
variable text contains the url escaped form of a SI document. It is usable for testing prototype phones.

http://matrix:8080/phplib/kannelgw.php?user=*deleted*&

pass=*deleted*=to=%2B358408676001&text=3D%02%06%17%AE%96localhost

%3A8080%00%AF%80%8D%CF%B4%80%02%05j%00E%C6%0C%03wap.iobox.fi%00%11%03

1%40wiral.com%00%07%0A%C3%07%19%99%06%25%15%23%15%10%C3%04+%02%060%01

%03Want+to+test+a+fetch%3F%00%01%01&udh=%06%05%04%0B%84%23%F0

Default network and bearer used by push proxy gateway
If network and bearer attributes of the pap control document are missing or set any, Kannel uses address
type for routing purposes: if the address type is a phone number (TYPE=PLMN), network defaults to
GSM and bearer to SMS; if it is a IP-address (TYPE=IPv4), network defaults to GSM and bearer to
CSD. So following minimal pap document works:

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>
<push-message push-id="9fjeo39jf084@pi.com">
<address address-value="WAPPUSH=+358408676001/TYPE=PLMN@ppg.carrier.com"/>

</push-message>
</pap>

132

Chapter 8. Setting up Push Proxy Gateway

Push related Kannel headers
This chapter recapitulates Kannel headers used by ppg.

PPG uses many Kannel headers. These are very similar as ones used by smsbox. (Both send sms to to the
phone, after all.)

Table 8-3. Kannel headers used by PPG

Variable Value Description

X-Kannel-SMSC string

Name of smsc used to deliver
this push. Smsc configuration
must contain some of
corresponding variables, see

X-Kannel-DLR-URL url

Url smsbox would call this url
when doing the delivery report.
Note that it can contain all
Kannel escapes. See table 6.7 for
details.

X-Kannel-DLR-Mask number

Mask telling smsbox when it
should do the delivery reports.
Values are same as used by
smsbox, see chapter Delivery
Reports for details.

X-Kannel-Smsbox-Id string

Tells which smsbox does the
delivery report. Smsbox
configuration must contain
corresponding variable.

Requesting SMS level delivery reports for WAP pushes
Push content is a normal binary SM, so you can ask delivery reports for them. These are useful for
testing purposes (did the phone get the content at all, or did it just reject it.) Another use is create
fall-back services for phones not supporting displaying a specific push content. (MMS one being perhaps
currently most obvious.) Generally speaking, this service is very similar to smsbox one. See chapter
Delivery Reports for details.

For ppg sms delivery reports you will need a fully working smsbox. Add configuration variable
smsbox-id to smsbox group (it is necessary, because there is no MT from any smsbox corresponding
the delivery report bearerbox is receiving):

group = smsbox
smsbox-id = dlrbox

133

Chapter 8. Setting up Push Proxy Gateway

bearerbox-host = localhost
log-file = "/var/log/kannel/smsbox-core.log"
log-level = 0
access-log = "/var/log/kannel/smsbox-access.log"

Start smsbox normal way after updating the configuration file.

You must add to PPG configuration file two less obvious variables: ppg-smsbox-id and
service-name. Ppg-smsbox-id defines smsbox through which you want to route delivery reports,
service-name makes possible for smsbox to handle wap pushes as a separate sms service.

Setting ppg-smsbox-id will route all ppg messages through same smsbox. You can route delivery
reports of separate user through separate smsboxes, by using configuration variable smsbox-id in group
wap push user. Or you can use X-Kannel-Smsbox-Id . This means routing every message separately.

You can supply dlr url and dlr mask as kannel header, or as a configuration variable in ppg user or ppg
core group. (This is order of precedence, too.) First one is valid for only one message, second for a
specific user, and third for every ppg user.

So following is a minimum ppg core group for sms delivery reports:

group = ppg
ppg-url = /wappush
ppg-port = 8080
concurrent-pushes = 100
trusted-pi = true
users = 1024
service-name = ppg
ppg-smsbox-id = dlrbox

And you can add Kannel headers to http post request. Here an example code snippet (C using Kannel
gwlib; this example asks for all possible delivery reports).

http_header_add(push_headers, "X-Kannel-SMSC", "link0");
http_header_add(push_headers, "X-Kannel-DLR-Url",

"http://193.53.0.56:8001/notification-dlr?smsc-id=%i"
"&status=%d&answer=%A&to=%P&from=%p&ts=%t");

http_header_add(push_headers, "X-Kannel-DLR-Mask",
octstr_get_cstr(dos = octstr_format("%d", 31)));

http_header_add(push_headers, "X-Kannel-Smsbox-Id", "dlrbox"));

Here status=%d tells the type of the delivery report and answer=%A the delivery report itself (sms
content of it). Other ones are needed to map delivery report to original wap push.

With these you can use with following http post request

http://193.53.0.56:8080/phplib/kannelgw.php?user=*deleted*&

pass=*deleted*=to=%2B358408676001&text=3D%02%06%17%AE%96localhost

%3A8080%00%AF%80%8D%CF%B4%80%02%05j%00E%C6%0C%03wap.iobox.fi%00%11%03

1%40wiral.com%00%07%0A%C3%07%19%99%06%25%15%23%15%10%C3%04+%02%060%01

%03Want+to+test+a+fetch%3F%00%01%01&udh=%06%05%04%0B%84%23%F0

Note that you can use all sms service escapes in dlrurl, see Parameters (Escape Codes) for details.

134

Chapter 8. Setting up Push Proxy Gateway

If you want to set dlr url for a specific user, you must set configuration variable dlr-urlin
wap-push-user, if for entire ppg, default-dlr-url in group ppg. Value must naturally match

with one used in group smsc.

Routing WAP pushes to a specific smsc
This chapter explains how to route wap push to a specific smsc.

Smsc routing for wap pushes is similar to sms pushes. So, firstly you must define configuration variable
smsc-id in smsc group (or groups) in question. Say you used value link0. You can send this as a
Kannel header:

http_header_add(push_headers, "X-Kannel-SMSC", "link0");

Then you can issue a request:

http://193.53.0.56:8080/phplib/kannelgw.php?user=*deleted*&

pass=*deleted*=to=%2B358408676001&text=3D%02%06%17%AE%96localhost

%3A8080%00%AF%80%8D%CF%B4%80%02%05j%00E%C6%0C%03wap.iobox.fi%00%11%03

1%40wiral.com%00%07%0A%C3%07%19%99%06%25%15%23%15%10%C3%04+%02%060%01

%03Want+to+test+a+fetch%3F%00%01%01&udh=%06%05%04%0B%84%23%F0

You can use configuration variables to route all messages of a specific user or all ppg messages. Set
default-smsc in group wap-push-user or in group ppg.

Again precedence of various methods of setting the smsc is kannel header, then configuration variable in
group wap push user and then in group ppg.

135

Chapter 9. Using SSL for HTTP
This chapter explains how you can use SSL to ensure secure HTTP communication on both, client and
server side.

Beware that the gateway, is acting in both roles of the HTTP model:

1. as HTTP client, i.e. for requesting URLs while acting as WAP gateway and while fetching
information for the SMS services.

2. as HTTP server, i.e. for the administration HTTP interface, the PPG and for the sendsms HTTP
interface.

That is why you can specify separate certification files within the core group to be used for the HTTP
sides.

You can use one or both sides of the SSL support. There is no mandatory to use both if only one is
desired.

Using SSL client support
To use the client support please use the following configuration directive within the core group

group = core
...
ssl-client-certkey-file = "filename"

Now you are able to use https:// scheme URLs within your WML decks and SMS services.

Using SSL server support for the administration HTTP
interface

To use the SSL-enabled HTTP server please use the following configuration directive within the core
group

group = core
...
admin-port-ssl = true
...
ssl-server-cert-file = "filename"
ssl-server-key-file = "filename"

136

Chapter 9. Using SSL for HTTP

Using SSL server support for the sendsms HTTP
interface

To use the SSL-enabled HTTP server please use the following configuration directive within the core and
smsbox groups

group = core
...
ssl-server-cert-file = "filename"
ssl-server-key-file = "filename"

group = smsbox
...
sendsms-port-ssl = true

Using SSL server support for PPG HTTPS interface
If you want use PAP over HTTPS, (it is, a https scheme) add following directives to the ppg core group:

group = ppg
...
ppg-ssl-port = 8090
ssl-server-cert-file = "/etc/kannel/cert1.pem"
ssl-server-key-file = "/etc/kannel/key1.pem"

PPG uses a separate port for HTTPS traffic, so so you must define it. This means that you can use both
HTTP and HTTPS, when needed.

137

Chapter 10. SMS Delivery Reports
This chapter explains how to set up Kannel to deliver delivery reports.

Delivery reports are a method to tell your system if the message has arrived on the destination phone.
There are different things which can happen to a message on the way to the phone which are:

• Message gets rejected by the SMSC (unknown subscriber, invalid destination number etc).

• Message gets accepted by the SMSC but the phone rejects the message.

• Message gets accepted by the SMSC but the phone is off or out of reach. The message gets buffered.

• Message gets successfully delivered.

Note: If you want to use delivery reports, you must define a smsc-id for each smsc group.

When you deliver SMS to Kannel you have to indicate what kind of delivery report messages you would
like to receive back from the system. The delivery report types currently implemented are:

• 1: delivery success

• 2: delivery failure

• 4: message buffered

• 8: smsc submit

• 16: smsc reject

If you want multiple report types, you simply add the values together. For example if you want to get
delivery success and/or failure you set the dlr-mask value to 1+2. and so on. If you specify dlr-mask

on the URL you pass on to Kannel you also need to specify dlr-url. dlr-url should contain the URL
to which Kannel should place a HTTP requests once the delivery report is ready to be delivered back to
your system.

An example transaction would work as following.

• 1. you send a message using dlr-mask=7 and
dlr-url=http://www.xyz.com/cgi/dlr.php?myId=123456&type=%d

• 2. Kannel forwards the message to the SMSC and keeps track of the message

• 3. The SMSC can not reach the phone and thus returns a buffered message

• 4. Kannel calls http://www.xyz.com/cgi/dlr.php?myId=123456&type=4 to indicate the message being
buffered

• 5. The phone is switched on and the SMS gets delivered from the SMSC. The SMSC reports this to
Kannel

• 6. Kannel calls http://www.xyz.com/cgi/dlr.php?myId=123456&type=1 to indicate the final success

138

Chapter 10. SMS Delivery Reports

Note: If you put your own message ID in the dlr-url like in the example above, you can then use this
ID to update your database with the message status.

Depending on the SMSC type not all type of messages are supported. For example a CIMD SMSC does
not support buffered messages. Also some SMSC drivers have not implemented all DLR types.

139

Chapter 11. Getting help and reporting bugs
This chapter explains where to find help with problems related to the gateway, and the preferred
procedure for reporting bugs and sending corrections to them.

The Kannel development mailing list is devel@kannel.org. To subscribe, send mail to
devel-subscribe@kannel.org (mailto:devel-subscribe@kannel.org). This is currently the best location for
asking help and reporting bugs. Please include configuration file and version number.

140

Appendix A. Upgrading notes
This appendix includes pertinent information about required changes on upgrades.

From 1.2.x or 1.3.1 to 1.3.2 and later

• 1. at module was dropped and at2 module is now called at

• 2. emi module was renamed to emi_x25, emi_ip sub-module was dropped and emi2 is now called
emi.

141

Appendix B. Certificate generation
This appendix includes pertinent information about required SSL certificate genaration, where needed.

Self-signed 1024-bit RSA SSL certificates using openssl

1. Generate private key:

openssl genrsa -des3 -out server.key 1024

You will be asked for a passphrase.

2. Generate a certificate request:

openssl req -new -key server.key -out server.csr

Several questions follow. At the end you may send server.csr to a certificate authority, which in turn
will sign it and generate the certificate for you, or you can sign it yourself.

3. Remove passphrase from key:

cp server.key server.key.org

openssl rsa -in server.key.org -out server.key

rm server.key.org

4. Self-sign the certificate:

If you chose not to send the request to a Certificate Authority, you will need to sign it yourself. This
one is good for 1 year:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out

server.crt

5. Move keys to desired location:

mv server.crt /etc/kannel/public/server.crt

mv server.key /etc/kannel/private/server.key

mv server.csr /etc/ianwap/private/ianwap.csr (key request)

Update configuration accordingly

142

Appendix C. Using the fake WAP sender
This appendix explains how to use the fake WAP sender to test the gateway.

143

Appendix D. Using the fake SMS center
Fakesmsc is a simple testing tool to test out Kannel and its SMS services. It cannot be used to send
messages to mobile terminals, it is just a simulated SMS center with no connection to real terminals.

Setting up fakesmsc
This section sums up needed steps to set up system for fakesmsc use.

Compiling fakesmsc
The fake SMS center should compile at the same time as main Kannel compiles. The outcome binary,
fakesmsc, is in test directory. The source code is quite simple and trivial, and is easily edited.

Configuring Kannel
To use fakesmsc to test out Kannel, you have to add it to main configuration file (see above). The
simplest form for this configuration group is like this:

group = smsc
smsc = fake
port = 10000

The fakesmsc configuration group accepts all common ’smsc’ configuration group variables, like
smsc-id, preferred-smsc-id or denied-smsc-id, which can be used to test out routing systems
and diverted services, before setting up real SMS center connections. If you include a fakesmsc group
when bearerbox is connected to real SMS centers, you should add the connect-allow-ip variable to
prevent unauthorized use.

To set up multiple fakesmsc’es, just add new groups. Remember to put a different port number to each
one.

Running Kannel with fakesmsc connections
After configuring Kannel, you can start testing it. The bearerbox will listen for fakesmsc client
connections to the port(s) specified in the configuration file.

Starting fake SMS center
Each fakesmsc is started from command line, with all sent messages after command name. If any options
are used (see below), they are put between the command and the messages. The usage is as follows:

test/fakesmsc [options] <message1> [message2 ...]

144

Appendix D. Using the fake SMS center

Options and messages are explained below, but as a quick example, a typical startup can go like this:

test/fakesmsc -i 0.1 -m 100 "100 200 text nop" "100 300 text echo this"

This tells fakesmsc to connect to bearerbox at localhost:10000 (default) and send a hundred messages
with an interval of 0.1 seconds. Each message is from number 100, and is either to number 200 with
message ’nop’ or to 300 with message ’echo this’.

Messages received from bearerbox are shown in the same format (described below).

Fake messages

Each message consists of four or five parts: sender number, receiver number, type, udh (if present) and
main message itself. Sender and receiver numbers do not mean anything except for log files and
number-based routing in Kannel.

The parts of a message are separated with spaces. As each message is taken as one argument, it must be
put in quotation marks.

Message type must be one of the following: "text", "data", "ucs2", "udh-data", "udh-text", "route" and
"dlr-mask". Here are some examples:

test/fakesmsc -i 0.01 -v 1 -m 1000 "100 300 text echo this message"
test/fakesmsc -i 0.01 -m 1000 "100 300 data echo+these+chars%03%04%7f"
test/fakesmsc -m 1 "100 500 udh-data %0eudh+stuff+here main+message"

For "text", the rest of the argument is taken as the literal message. For "data", the next part must be the
url-encoded version of the message. Space is coded as ’+’. For "ucs2", the next part must be the
url-encoded version of the message. For "udh-data", the next 2 parts are the UDH and main message.
Both must be in url-encoded form. For "udh-text", the UDH part must be url-encoded, and the message is
taken as literals. For "route" both values are literal, where the first value defines the smsbox route
destination. For "dlr-mask" noth values are literal, where the first value defines the numerical DLR event.

If multiple messages are given, fakesmsc randomly chooses one for each sending.

Interactive mode

If no messages are passed on the command line when starting fakesmsc, it runs on "interactive mode".

When running on this mode, fakesmsc accept single messages typed on stdin (without quotation marks)
and displays the responses on stdout. This allows for a more finely controlled interaction with the
backend applications.

Fakesmsc command line options

Fake SMS center can be started with various optional command line arguments.

Table D-1. Fakesmsc command line options

Switch Value Description

145

Appendix D. Using the fake SMS center

Switch Value Description

-H host
Use host host instead of default
localhost.

-r port
Use port number port instead of

default 10000.

-i interval

Use message interval interval (in
seconds, fractions accepted)
instead of default interval 1.0
seconds.

-m max

Send a maximum of max
messages. Value -1 means that an
unlimited number of messages is
sent. Default -1. Using 0 can be
useful to listen for messages sent
via other channels.

In addition, fakesmsc accepts all common Kannel Command line options like --verbosity.

146

Appendix E. Setting up a test environment for
Push Proxy Gateway

This appendix explains how to set a test environment for PPG. This contains a simulated SMSC, for
instance a http server simulation (this is used as example, because it is simplest) and a simulated push
initiator. Between them, there is the push proxy gateway to be tested. This means that you must configure
HTTP SMSC.

Creating push content and control document for testing
Here is an example of a push control document, which gives PPG instructions how to do the pushing.

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>
<push-message push-id="9fjeo39jf084@pi.com"

deliver-before-timestamp="2001-09-28T06:45:00Z"
deliver-after-timestamp="2001-02-28T06:45:00Z"
progress-notes-requested="false">

<address address-value="WAPPUSH=+358408676001/TYPE=PLMN@ppg.carrier.com"/>
<quality-of-service priority="low"

delivery-method="unconfirmed"
network-required="true"
network="GSM"
bearer-required="true"
bearer="SMS"/>

</push-message>
</pap>

Because the push content is send to the phone over SMS, right value for network-required and
bearer-required is true, for network GSM and for bearer SMS. However, you can omit these
values altogether, if you use a phone number as an address. Address value is international phone number
and it must start with plus. It is used here as an unique identifier, SMSC, or sendsms script must
transform it to an usable phone number.

Here is an example of Service Indication, a type of push content. Essentially, the phone displays, when it
receives this SI, the text "Want to test a fetch" and if the user wants, fetches the content located by URL
http://wap.iobox.fi.

<?xml version="1.0"?>
<!DOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0//EN"

"http://www.wapforum.org/DTD/si.dtd">
<si>
<indication href="http://wap.iobox.fi"

si-id="1@wiral.com"
action="signal-high"
created="1999-06-25T15:23:15Z"

147

Appendix E. Setting up a test environment for Push Proxy Gateway

si-expires="2002-06-30T00:00:00Z">
Want to test a fetch?

</indication>
</si>

Note that the date value of the si-expires attribute contains trailing zeroes. They are OK here, because SI
tokenizer removes them. But phones does not accept them in the final SMS data message. You should
probably use action="signal-high" for testing purposes, for it causes an immediate presentation of
the push message. Production usage is a quite another matter.

Another example of push content is Service Loading. In principle, the phone should fetch immediately
content from URL http://wap.iobox.fi when it receives this document. This sounds quite
insecure, and indeed, user invention is probably required before fetching.

<?xml version="1.0"?>
<!DOCTYPE sl PUBLIC "-//WAPFORUM//DTD SL 1.0//EN"

"http://www.wapforum.org/DTD/sl.dtd">
<sl href="http://wap.iobox.fi"

action="execute-high">
</sl>

Starting necessary programs
PPG test environment contains, in addition of wapbox and bearerbox, two test programs, test_ppg
(simulating push initiator) and test_http_server (simulating a SMSC center accepting pushed
content send over SMS. You can find both of these programs in test directory, and they both are short
and easily editable.

To set up a test environment, you must first configure a push proxy gateway (setting flag trusted-pi true
makes testing easier). This explained in Chapter "Setting up push proxy gateway". Then issue following
commands, in Kannel’s root directory and in separate windows:

gw/bearerbox [config-file]

gw/wapbox [config-file]

Of course you can use more complicated wapbox and bearerbox command line options, if necessary.

To run a http smsc, start http server simulation:

test/test_http_server -p port

You can, of course, select the port at will. Remember, though, that PPG listens at the port defined in the
ppg configuration file. Other test_http_server options are irrelevant here.

Lastly, start making push requests, for instance with a test program test_ppg. Its first argument is a
URL specifying location of push services. Other arguments are two file names, first one push content and

148

Appendix E. Setting up a test environment for Push Proxy Gateway

second one pap control document. (For command line options, see Table C.1.). For example doing one
push(you can simplify push url by setting a ppg configuration variable, see "Setting up push proxy
gateway"; q flag here prevents dumping of test_ppg program debugging information):

test/test_ppg -q http://ppg-host-name:ppg-port/ppg-url [content_file]

[control_file]

This presumes that you have set trusted-pi true.

If you want use authentication in a test environment, you can pass username and password either using
headers (setting flag -b) or url (you must have set trusted-pi false and added wap-push-user configuration
group):

test/test_ppg -q http://ppg-host-name:ppg-port?username=ppg-username’&’

password=ppg-password [content_file] [control_file]

Table E-1. Test_ppg’s command line options

Switch Value Description

-c string

Use content qualifier string
instead of default si (service
indication). Allowed values are
wml, si, sl, sia, multipart, nil and
scrap. Nil and scrap are used for
debugging purposes. Wml does
work with some older phone
simulators.

-a string

Use application id string instead
of default any. Application
identifies the application in the
phone that should handle the
push request. Sia, ua, mms, nil
and scrap are accepted. Nil and
scrap are used for debugging
purposes.

-e string

Use transfer encoding when
sending a push content. Only
base64 is currently supported.

-b boolean
Use headers for authentication,

instead of url. Default off.

-i number
Wait interval number instead of

default 0 between pushes.

-r number
Do number requests instead of

default 1.

-t number
Use number threads instead of

default 1.

149

Appendix E. Setting up a test environment for Push Proxy Gateway

Switch Value Description

-s string

Use string as a
X-WAP-Application-Id header
(You must supply whole header).

-I string

Use string as a
X-WAP-Initiator-URI header
(You must supply whole header).

-B boolean
If set, accept binary content.

Default is off. 1.

-d enumerated string

Set delimiter to be used.
Acceptable values are crlf and lf.
Default is crlf.

-p boolean
If set, add an preamble

(hard-coded one). Default is off.

-E boolean
if set, add an epilogue

(hard-coded). Default is off.

Using Nokia Toolkit as a part of a developing
environment

This chapter describes a developing environment using Nokia Toolkit instead of test_http_server
program.

You cannot use a real phone for testing a push server. Sending random messages to a phone does not
work, because its only feedback (if it works properly) in error situations is dropping the offending
message.

Nokia Toolkit, instead, displays push headers, decompiles tokenized documents and outputs debugging
information. It is not, of course, a carbon copy of a real phone. But it is still useful for checking spec
conformance of push servers.

Toolkit runs on Windows, the first thing you must is to install a virtual machine (VMWare is one
possibility) in the machine where Kannel runs. Then you must configure Toolkit for working with a push
gateway.

Then start bearerbox and wapbox similar way as told before. You must set the correct client address
in the push document send by test_ppg program. Use IP address of our virtual machine (easiest way to
get this is to ping your virtual machine name in the dos prompt window). Your bearer is in this case IP.
An example pap document follows:

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>
<push-message push-id="9fjeo39jf084@pi.com"

150

Appendix E. Setting up a test environment for Push Proxy Gateway

deliver-before-timestamp="2001-09-28T06:45:00Z"
deliver-after-timestamp="2001-02-28T06:45:00Z"
progress-notes-requested="false">

<address address-value="WAPPUSH=192.168.214.1/TYPE=IPV4@ppg.carrier.com"/>
<quality-of-service priority="low"

delivery-method="unconfirmed"
</quality-of-service>

</push-message>
</pap>

Note address-value format. It is contains type and value, because PAP protocol supports different address
formats.

You must use test_ppg’s -a and -c flags when pushing messages to Toolkit. -A defines the client
application handling pushes, right value for it is ua. -C defines the content type of your push message. SI
works with all Toolkits, wml only with some older versions.

Testing PAP protocol over HTTPS
When testing HTTPS connection to PPG, you probably want use test_ppg’s configuration file, because
number of required parameters is quite high. Here is a example test_ppg configuration file:

group = test-ppg
retries = 2
pi-ssl = yes
ssl-client-certkey-file = /etc/kannel/certkey.pem

group = configuration
push-url = https://localhost:8900/wappush
pap-file = /etc/kannel/ipnoqos.txt
content-file = /etc/kannel/si.txt
username = foo
password = bar

With a configuration file, you can do a push by typing:

test/test_ppg -q [configuration_file]

Table E-2. Test_ppg’s configuration file directives

Directive Value Description

group test_ppg
Mandatory parameter. Start of

test_ppg’s core group.

retries number

The client tries to log in to PPG
number times before discarding
the push request. Default is 2.

151

Appendix E. Setting up a test environment for Push Proxy Gateway

Directive Value Description

pi-ssl boolean

Mandatory parameter for
HTTPS connection. Does the
client use HTTPS connection.
Default is no.

ssl-client-certkey-file filename

Mandatory parameter for
HTTPS connection. File
containing the client’s ssl
certificate and private key.

ssl-trusted-ca-file filename

Mandatory parameter for
HTTPS connection.This file
contains the certificates test_ppg
is willing to trust. If this directive
is not set, certificates are not
validated and HTTPS would not
be tested.

group configuration
Mandatory parameter. Start of

test_ppg’s test group.

push-url url
Mandatory value. URL locating

PPG’s services.

pap-file filename

Mandatory value. File
containing pap request’s control
document.

content-file filename

Mandatory value. File
containing pap request’s content
document.

username string
Mandatory value. PPG service

user’s username.

password string
Mandatory value. PPG service

user’s password.

152

Appendix F. Setting up a dial-up line
This appendix explains how to set up a dial-up line in Linux for use with the Kannel WAP gateway. In
order for it to work you need a Linux kernel with PPP capabilities. Most distributions provides PPP
kernel support by default. For more information how to compile PPP support into the kernel please read
the "Linux Kernel HOWTO" at http://www.linuxdoc.org/.

Analog modem
This section explains how to set up a dial-up line with an analog modem.

Download and install the mgetty package.

rpm -ivh mgetty-VERSION-rpm

To run mgetty as a daemon, add the following line to /etc/inittab.

Read man inittab for more detailed information. In this example we assume your modem is connected to
the serial port ttyS0 (COM 1).

S0:2345:respawn:/sbin/mgetty ttyS0 -x 6 -D /dev/ttyS0

We need to start the pppd automatically when mgetty receives an AutoPPP request. Add the next line to
/etc/mgetty+sendfax/login.config

/AutoPPP/ - - /usr/sbin/pppd file /etc/ppp/options.server

In /etc/mgetty+sendfax/mgetty.config you might need to change the connect speed between the computer
and the modem. Note: this is not the connect speed between the WAP client and the server modem. If
you are e.g. going to use a Nokia 7110 as the server side modem you need to change the speed to 19200.
Usually you can just leave the speed to the default value (38400).

speed 38400

Add the following lines to /etc/ppp/options.server

refuse-chap

require-pap

lock

modem

crtscts

passive

192.168.1.10:192.168.1.20

debug

153

Appendix F. Setting up a dial-up line

In /etc/ppp/pap-secrets add the username and password for the ppp account. The IP address is the one
assigned to the phone.

wapuser * wappswd 192.168.0.20

Configure your phone (this example is for Nokia 7110)

homepage http:/yourhost/hello.wml

connection type continuous

connection security off

bearer data

dial up number (your phone number)

ip address (IP of host running bearerbox)

auth type normal

data call type analogue

data call speed 9600

username wapuser

password wappswd

ISDN terminal
This section needs to be written

154

Appendix G. Regular Expressions
Note: this is not intended to be an introduction to regular expressions (short: regex) but a description of
their application within Kannel. For general information regarding regexes please refer to
[Biblio-regexp].

Syntax and semantics of the regex configuration
parameter

This section describes the regex-configuration parameters and their effects in combination with the
respective non-regex-parameter, e.g. white-list and white-list-regex.

How-to setup the regex-parameters
examples, short syntax, what happens on errors Regex-parameters are configured just as every other
parameter is configured. Regular expressions are supported as defined by POSIX Extended Regular
Expressions. Suppose a configuration where only SMS messages originating from a sender using a
number with a prefix of "040", "050", "070" or "090" are accepted. Without regexes the configuration
would read

allowed-prefix="040;050;070;090"

Using regular expressions yields a more concise configuration

allowed-prefix-regex=^0[4579]0

The following table gives an overview over some regex-operators and their meaning, the POSIX Regular
Expressions manual page (regex(7)). Once again, the extended regex-syntax is used and the table is just
meant as a means to give a quick-start to regular expressions, the next section features some more
complex examples.

Operator Meaning
| or, for example "dog|hog" matches dog or hog.

{number,number} repetition, for example "a{2,5}" matches - among
others - "aa", "aaa" and "baaaaad"

* shorthand for {0,}

? shorthand for {0,1}

+ shorthand for {1,}

155

Appendix G. Regular Expressions

Operator Meaning
[] bracket expression, defines a class of possible

single character matches. For example "[hb]og"
matches "hog" and "bog". If the expression starts
with ^ then the class is negated, e.g. "[^hb]og"
does not match "hog" and "bog" but matches for
example "dog".

() groups patterns, e.g. "[hb]o(g|ld)" matches "hog",
"hold", "bog", "bold"

[:class:] A character class such as digit, space etc. See
wctype(3) for details.

^ Start of line anchor.

$ End of line anchor.

The advantages of regular expressions are at hand

• Regexes are easier to understand, if one is fluent in POSIX Regular Expressions. Although simple
expressions as shown above should be clear to everyone who has ever used a standard UN*X shell.

• Regexes are easier to maintain. Suppose the example above needed to cope with dozens of different
prefixes each with subtle differences, in such cases using a - carefully constructed - regular expression
could help to keep things in apple pie order. Furthermore regexes help reducing redundancy within the
configuration.

• Regexes more flexible than standard parameters.

Nevertheless, it must be mentioned that - in addition to the overhead involved - complexity is an issue,
too. Although the syntactic correctness of each used regular expression is ensured (see below) the
semantic correctness cannot be automatically proofed.

Expressions that are not compilable, which means they are not valid POSIX regexes, force Kannel to
panic with a message like (note the missing "]")

ERROR: gwlib/regex.c:106: gw_regex_comp_real: regex compilation ‘[hbo(g|ld)’ failed: Invalid regular expression (Called from gw/urltrans.c:987:create_onetrans.)

PANIC: Could not compile pattern ’[hbo(g|ld)’

As shown the erroneous pattern is reported in the error message.

Regex and non-regex-parameters
Using the regex and non-regex version of a parameter at the same time should be done with caution.
Both are combined in a boolean-or sense, for example

white-list=01234
white-list-regex=^5(23)?$

156

Appendix G. Regular Expressions

implies that a number is accepted either if it is "01234", "5" or "523" - note the use of anchors! The same
goes for all the other parameters, thus both mechanisms can be used without problems in parallel, but
care should be taken that the implications are understood and wanted.

Performance issues
While there is some overhead involved, the actual performance degradation is negligible. At startup - e.g.
when the configuration files are parsed - the regular expressions are pre-compiled and stored in the
pre-compiled fashion, thus future comparisons involve executing the expression on some string only. To
be on the sure side, before using regexes extensively some benchmarking should be performed, to verify
that the loss of performance is acceptable.

Examples
This section discusses some simple scenarios and potential solutions based on regexes. The examples are
not meant to be comprehensive but rather informative.

Example 1: core-configuration
The bearerbox must only accept SMS messages from three costumers. The first costumer uses numbers
that always start with "0824" the second one uses numbers that start with either "0123" and end in "314"
or start with "0882" and end in "666". The third costumer uses numbers starting with "0167" and ending
in a number between "30" and "57".

Important in this and in the following examples is the use of anchors, otherwise a "string contains"
semantic instead of a "string is equal" semantic would be used.

group=core
...
white-list-regex=^((0824[0-9]+)|(0123[0-9]+314)|(0882[0-9]+666)|(0167[0-9]+([34][0-9]|5[0-7])))$
...

Example 3: smsc-configuration
Only SMS messages originating from certain SMSCs (smsc-id is either "foo", "bar" or "blah") are
preferably forwarded to this smsc. Furthermore all SMSCs with an id containing "vodafone" must never
be forwarded to the smsc. Not the missing anchors around "vodafone".

group=smsc
...
preferred-smsc-id-regex=^(foo|bar|blah)$
denied-prefix-regex=vodafone
...

157

Appendix G. Regular Expressions

Example 4: sms-service-configuration
Please note that there are a mandatory keyword and an optional keyword-regex fields. That means that
service selection can be simplified as in the following example. Suppose that some Web-content should
be delivered to the mobile. Different costumers use the same service but they rely on different keywords.
Whenever a sms-service is requested, Kannel first checks whether a regex has been defined, if not a
literal match based on keyword is performed. If a regex is configured then the literal match is never tried.

group=sms-service
...
keyword=web_service
keyword-regex=^(data|www|text|net)$
get-url=http://someserver.net/getContent.jsp
...

158

Appendix H. Meta Data
This appendix describes the elements and syntax required to access meta-data coming from and going to
SMSC connections.

Overview
Many SMSC services have means to exchange data that doesn’t conform to the established format

For example, the SMPP protocol defines the TLV (Tag, Length, Value) mechanism to allow adding
arbitrary parameters to it’s PDU’s, thus extending it’s functionality.

To achieve this, a special group and parameters were added to abstract the meta-data into something that
could be used disregarding the SMSC type.

Currently only the SMPP module is implemented, but the format chosen allows for other modules to be
added in the future.

SMPP Implementation
A special group type smpp-tlv is needed for each TLV. Each group defines the address, data type and
length of the TLV

Example configuration:

group = smpp-tlv
name = my_tlv_name
tag = 0x1601
type = octetstring
length = 20
smsc-id = a;b;c

Variable Data Type Description

tag hex

32-Bit HEX address for the
given TLV. Must match SMPP
specifications for the TLV (or be
agreed with the SMSC operator).

type string

Accepted data type. Accepted
values are integer,
nulterminated and
octetstring. Must match
SMPP specifications for the TLV
(or be agreed with the SMSC
operator).

159

Appendix H. Meta Data

Variable Data Type Description

length integer

Maximum data length expected
in bytes. Must match SMPP
specifications for the TLV (or be
agreed with the SMSC operator).

smsc-id string

An optional smsc-id for which
this TLV is valid. If smsc-id is
not given then this TLV is valid
for all SMSCs. To define list of
smsc-id, just use ; as split char.

const string

An optional constant value
which is used if no value is set
for this TLV via meta-data.

Beside defined in the configuration smpp-tlv group, SMPP also supports some hardcoded meta-data

values:

• data_coding

• source_addr_ton

• source_addr_npi

• dest_addr_ton

• dest_addr_npi

MO Messages
Meta Data coming from MO messages comes urlencoded into the %D parameter. Only TLV parameters
defined on the configuration file are honored.

Example

http://localhost/myscript?...&meta-data=%D&...

MT Messages
To send into an MT messages the meta-data parameter should be used.

The format used to pass the data has 2 parts: The ?smsc-type? (surrounded by question marks), which
specify the kind of smsc receiving the data (at the moment only smpp is implemented) and then a set of
key/value pairs with the data to be transmitted. Extra smsc-types can be added surrounded by question
marks and followed by the key/value pairs.

160

Appendix H. Meta Data

In other words, the data should be coded using the following format, where URLENCODE() implies that
the data between parentheses should be urlencoded:

?URLENCODE(<smsc-type1>)?URLENCODE(key1)=URLENCODE(value1)&URLENCODE(key2)=URLENCODE(value2)&...

?URLENCODE(<smsc-type2>)?URLENCODE(key1)=URLENCODE(value1)&...

Only the parameters defined on the configuration file are honored.

Important: For the sendsms interface, you must URLENCODE the resulting string again to pass it as a
single parameter on the URL.

Examples

If we want to send the parameter "my-data" with value "Hello World" to an SMSC over SMPP, we’d use:

sendsms get-url:

http://localhost:13013/cgi-bin/sendsms?...&meta-data=%3Fsmpp%3Fmy-data%3DHello%2BWorld

sendsms post:

Send ?smpp?my-data=Hello+World on the X-Kannel-Meta-Data header

XML:

<meta-data>?smpp?my-data=Hello+World</meta-data>

161

Appendix I. Log files
This appendix describes the log file format.

Bearerbox Access Log
2001-01-01 12:00:00 Sent SMS [SMSC:smsc] [SVC:sms] [ACT:account] [BINFO:binfo] [FID:1234567890] [META:meta]

[from:12345] [to:67890] [flags:0:1:0:0:0] [msg:11:Hello World] [udh:0]

Variable Value Description
Date 2001-01-01 12:00:00 Date

Result Sent SMS
Result: Send, failed, DLR

(deliver report), Received, etc.

SMSC smsc
Smsc id (smsc-id) defined in

configuration group smsc

SVC sms

Service name (name) defined in
configuration group
sendsms-user

ACT account

Account name (name) defined in
configuration group
sendsms-user

BINF binfo
Billing information used to send

this message.

Foreign ID 1234567890

Foreign (SMSC-provided)
Message ID (only available on
MT messages)

META meta-data

Meta-data used to send this
message. See Meta Data for an
explanation about meta-data.

from 12345 Sender
to 67890 Recipient

Flags 0:1:0:0:0
Flags: MClass, Coding, MWI,

Compress, DLRMask

Message Text 11:Hello World

Size of message and message
dump (in text or hex if it’s
binary)

User Data Header 0:
Size of UDH and UDH Hex

dump

162

Appendix I. Log files

Log rotation
If Kannel is configured so that the bearerbox, wapbox and/or smsbox log to file each of these log files
will continue to grow unless administered in some way (this is specially true if access logs are created
and/or the log level is set to debug).

A typical way of administering log files is to ’rotate’ the logs on a regular basis using a tool such as
logrotate. A sample logrotate script (to be added to /etc/logrotate.d) is shown below. In this example the
Kannel log files found in /var/log/kannel are rotated and compressed daily over 365 days. See the
documentation for logrotate for more details. Of particular note however is the postrotate command, this
killall -HUP issues a SIGHUP signal to each Kannel box process running. The SIGHUP signal has the
effect of reopening the log file, and performing graceful restart of SMSC connections. Without this
command Kannel will continue to write to the rotated log file. Kannel bearerbox can use the SIGUSR2 to
reopen the logs only, without performing the graceful restart. This may be more applicable for logrotate
usage.

/var/log/kannel/*.log {

daily

missingok

rotate 365

compress

delaycompress

notifempty

create 640 kannel adm

sharedscripts

postrotate

killall -USR2 bearerbox && killall -HUP smsbox wapbox || true > /dev/null 2> /dev/null

endscript

}

163

Glossary

M
MO

Mobile Originated - a SMS from mobile to application

MT

Mobile Terminated - a SMS from application to mobile

MWI

Message Waiting Indicator (See [Biblio-3GPP-23038])

MClass

Message Class (See [Biblio-3GPP-23038])

Coding

Message Coding (See [Biblio-3GPP-23038])

164

Bibliography

RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1,
http://www.w3.org/Protocols/rfc2616/rfc2616.html, Request for Comments: 2616, The Internet
Society, 1999.

3GPP 23.038, http://www.3gpp.org/ftp/Specs/latest/Rel-5/23_series/23038-500.zip, ..., 3GPP, ?.

3GPP 23.040, http://www.3gpp.org/ftp/Specs/latest/Rel-5/23_series/23040-530.zip, ..., 3GPP, ?.

regex(7), GNU regex manual: , GNU, 1998.

165

	Kannel svnr5316M User's Guide
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	Overview of WAP
	Overview of WAP Push
	Overview of SMS
	Features
	WAP
	WAP Push
	SMS

	Requirements

	Chapter 2. Installing the gateway
	Getting the source code
	Finding the documentation
	Compiling the gateway
	Installing the gateway
	Using precompiled binary packages
	Installing Kannel from RPM packages
	Installing Kannel from DEB packages

	Chapter 3. Using the gateway
	Configuring the gateway
	Configuration file syntax
	Inclusion of configuration files
	Core configuration

	Running Kannel
	Starting the gateway
	Command line options
	Kannel statuses
	HTTP administration

	Chapter 4. Setting up a WAP gateway
	WAP gateway configuration
	Wapbox group

	Running WAP gateway
	Checking whether the WAP gateway is alive

	Chapter 5. Setting up wtls security
	Wtls configuration

	Chapter 6. Setting up MSISDN provisioning for WAP gateway
	RADIUS accounting proxy configuration
	RADIUSAcct configuration
	Using the MSISDN provisioning on HTTP server side

	Chapter 7. Setting up a SMS Gateway
	Required components
	SMS gateway configuration
	SMS centers
	Nokia CIMD 1.37 and 2.0
	CMG UCP/EMI 4.0 and 3.5
	SMPP 3.3, 3.4 and 5.0
	Sema Group SMS2000 OIS 4.0, 5.0 and 5.8
	SM/ASI (for CriticalPath InVoke SMS Center 4.x)
	GSM modem
	Modem initialization

	GSMA OneAPI v1.0 ParlayX SMS SOAP
	Fake SMSC
	HTTPbased relay and content gateways
	The "generic" systemtype

	Loopback SMSC (MT to MO direction switching)
	Using multiple SMS centers
	Feature checklist

	External delivery report (DLR) storage
	Internal DLR storage
	MySQL DLR storage
	MySQL connection configuration

	LibSDB DLR storage
	Oracle 8i/9i DLR storage
	PostgreSQL DLR storage
	MSSQL/Sybase DLR storage
	SQLite3 DLR storage
	Redis DLR storage
	Redis connection configuration

	Cassandra DLR storage
	DLR database field configuration

	SMSBox configuration
	Smsbox group
	Smsbox routing inside bearerbox
	SMSservice configurations
	How smsservice interprets the HTTP response
	Extended headers
	Kannel POST
	XML Post

	SendSMSuser configurations
	OverTheAir configurations
	Setting up more complex services
	Redirected replies
	Setting up operator specific services
	Setting up multioperator Kannel

	Running SMS gateway
	Using the HTTP interface to send SMS messages
	Using the HTTP interface to send OTA configuration messages
	OTA settings and bookmark documents
	OTA syncsettings documents
	OMA provisioning content
	GET method for the OTA HTTP interface

	Chapter 8. Setting up Push Proxy Gateway
	Configuring ppg core group, for push initiator (PI) interface
	Configuring PPG user group variables
	Finishing ppg configuration
	Running a push proxy gateway
	An example using HTTP SMSC
	An example of minimum SI document
	An example push (tokenized SI) document
	Default network and bearer used by push proxy gateway
	Push related Kannel headers
	Requesting SMS level delivery reports for WAP pushes
	Routing WAP pushes to a specific smsc

	Chapter 9. Using SSL for HTTP
	Using SSL client support
	Using SSL server support for the administration HTTP interface
	Using SSL server support for the sendsms HTTP interface
	Using SSL server support for PPG HTTPS interface

	Chapter 10. SMS Delivery Reports
	Chapter 11. Getting help and reporting bugs
	Appendix A. Upgrading notes
	From 1.2.x or 1.3.1 to 1.3.2 and later

	Appendix B. Certificate generation
	Selfsigned 1024bit RSA SSL certificates using openssl

	Appendix C. Using the fake WAP sender
	Appendix D. Using the fake SMS center
	Setting up fakesmsc
	Compiling fakesmsc
	Configuring Kannel

	Running Kannel with fakesmsc connections
	Starting fake SMS center
	Fake messages
	Interactive mode
	Fakesmsc command line options

	Appendix E. Setting up a test environment for Push Proxy Gateway
	Creating push content and control document for testing
	Starting necessary programs
	Using Nokia Toolkit as a part of a developing environment
	Testing PAP protocol over HTTPS

	Appendix F. Setting up a dialup line
	Analog modem
	ISDN terminal

	Appendix G. Regular Expressions
	Syntax and semantics of the regex configuration parameter
	Howto setup the regexparameters
	Regex and nonregexparameters
	Performance issues

	Examples
	Example 1: coreconfiguration
	Example 3: smscconfiguration
	Example 4: smsserviceconfiguration

	Appendix H. Meta Data
	Overview
	SMPP Implementation
	MO Messages
	Example

	MT Messages
	Examples

	Appendix I. Log files
	Bearerbox Access Log
	Log rotation

	Glossary
	M
	MO
	MT
	MWI
	MClass
	Coding

	Bibliography

